# Training customization TRL is designed with modularity in mind so that users to be able to efficiently customize the training loop for their needs. Below are some examples on how you can apply and test different techniques. Note: Although these examples use the DPOTrainer, the customization applies to most (if not all) trainers. ## Use different optimizers and schedulers By default, the `DPOTrainer` creates a `torch.optim.AdamW` optimizer. You can create and define a different optimizer and pass it to `DPOTrainer` as follows: ```python from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer from torch import optim from trl import DPOConfig, DPOTrainer model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train") training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO") optimizer = optim.SGD(model.parameters(), lr=training_args.learning_rate) trainer = DPOTrainer( model=model, args=training_args, train_dataset=dataset, tokenizer=tokenizer, optimizers=(optimizer, None), ) trainer.train() ``` ### Add a learning rate scheduler You can also play with your training by adding learning rate schedulers. ```python from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer from torch import optim from trl import DPOConfig, DPOTrainer model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train") training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO") optimizer = optim.AdamW(model.parameters(), lr=training_args.learning_rate) lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1) trainer = DPOTrainer( model=model, args=training_args, train_dataset=dataset, tokenizer=tokenizer, optimizers=(optimizer, lr_scheduler), ) trainer.train() ``` ## Memory efficient fine-tuning by sharing layers Another tool you can use for more memory efficient fine-tuning is to share layers between the reference model and the model you want to train. ```python from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer from trl import create_reference_model, DPOConfig, DPOTrainer model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") ref_model = create_reference_model(model, num_shared_layers=6) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train[:1%]") training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO") trainer = DPOTrainer( model=model, ref_model=ref_model, args=training_args, train_dataset=dataset, tokenizer=tokenizer, ) trainer.train() ``` ## Pass 8-bit reference models Since `trl` supports all keyword arguments when loading a model from `transformers` using `from_pretrained`, you can also leverage `load_in_8bit` from `transformers` for more memory efficient fine-tuning. Read more about 8-bit model loading in `transformers` [here](https://huggingface.co/docs/transformers/en/peft#load-in-8bit-or-4bit). ```python from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from trl import DPOConfig, DPOTrainer model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") quantization_config = BitsAndBytesConfig(load_in_8bit=True) ref_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", quantization_config= quantization_config) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train") training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO") trainer = DPOTrainer( model=model, ref_model=ref_model, args=training_args, train_dataset=dataset, tokenizer=tokenizer, ) trainer.train() ``` ## Use the accelerator cache optimizer When training large models, you should better handle the accelerator cache by iteratively clearing it. To do so, simply pass `optimize_device_cache=True` to `DPOConfig`: ```python training_args = DPOConfig(..., optimize_device_cache=True) ```