# Sentiment Tuning Examples The notebooks and scripts in this examples show how to fine-tune a model with a sentiment classifier (such as `lvwerra/distilbert-imdb`). Here's an overview of the notebooks and scripts in the [trl repository](https://github.com/huggingface/trl/tree/main/examples): | File | Description | |------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------| | [`examples/scripts/ppo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/ppo.py) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/trl/blob/main/examples/sentiment/notebooks/gpt2-sentiment.ipynb) | This script shows how to use the `PPOTrainer` to fine-tune a sentiment analysis model using IMDB dataset | | [`examples/notebooks/gpt2-sentiment.ipynb`](https://github.com/huggingface/trl/tree/main/examples/notebooks/gpt2-sentiment.ipynb) | This notebook demonstrates how to reproduce the GPT2 imdb sentiment tuning example on a jupyter notebook. | | [`examples/notebooks/gpt2-control.ipynb`](https://github.com/huggingface/trl/tree/main/examples/notebooks/gpt2-control.ipynb) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/trl/blob/main/examples/sentiment/notebooks/gpt2-sentiment-control.ipynb) | This notebook demonstrates how to reproduce the GPT2 sentiment control example on a jupyter notebook. ## Usage ```bash # 1. run directly python examples/scripts/ppo.py # 2. run via `accelerate` (recommended), enabling more features (e.g., multiple GPUs, deepspeed) accelerate config # will prompt you to define the training configuration accelerate launch examples/scripts/ppo.py # launches training # 3. get help text and documentation python examples/scripts/ppo.py --help # 4. configure logging with wandb and, say, mini_batch_size=1 and gradient_accumulation_steps=16 python examples/scripts/ppo.py --log_with wandb --mini_batch_size 1 --gradient_accumulation_steps 16 ``` Note: if you don't want to log with `wandb` remove `log_with="wandb"` in the scripts/notebooks. You can also replace it with your favourite experiment tracker that's [supported by `accelerate`](https://huggingface.co/docs/accelerate/usage_guides/tracking). ## Few notes on multi-GPU To run in multi-GPU setup with DDP (distributed Data Parallel) change the `device_map` value to `device_map={"": Accelerator().process_index}` and make sure to run your script with `accelerate launch yourscript.py`. If you want to apply naive pipeline parallelism you can use `device_map="auto"`.