# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import Optional from datasets import load_dataset from huggingface_hub import ModelCard from transformers import HfArgumentParser @dataclass class ScriptArguments: r""" Arguments for the script. Args: push_to_hub (`bool`, *optional*, defaults to `False`): Whether to push the dataset to the Hugging Face Hub. repo_id (`str`, *optional*, defaults to `"trl-lib/ultrafeedback-prompt"`): Hugging Face repository ID to push the dataset to. dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): Number of workers to use for dataset processing. """ push_to_hub: bool = field( default=False, metadata={"help": "Whether to push the dataset to the Hugging Face Hub."}, ) repo_id: str = field( default="trl-lib/ultrafeedback-prompt", metadata={"help": "Hugging Face repository ID to push the dataset to."}, ) dataset_num_proc: Optional[int] = field( default=None, metadata={"help": "Number of workers to use for dataset processing."}, ) def to_unpaired_preference(example): prompt = [{"role": "user", "content": example["instruction"]}] return {"prompt": prompt} def drop_long_prompt(example): if len(example["prompt"][0]["content"]) > 512: return False else: return True model_card = ModelCard(""" --- tags: [trl] --- # UltraFeedback - Prompts Dataset ## Summary The UltraFeedback - Prompts dataset is a processed version of the [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset for model evaluation on specific aspects like helpfulness, honesty, and instruction-following. ## Data Structure - **Format**: [Conversational](https://huggingface.co/docs/trl/main/dataset_formats#conversational) - **Type**: [Prompt-only](https://huggingface.co/docs/trl/main/dataset_formats#prompt-only) Column: - `"prompt"`: The input question or instruction provided to the model. ## Generation script The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/ultrafeedback-prompt.py). """) if __name__ == "__main__": parser = HfArgumentParser(ScriptArguments) script_args = parser.parse_args_into_dataclasses()[0] dataset = load_dataset("openbmb/UltraFeedback", split="train") dataset = dataset.map( to_unpaired_preference, remove_columns=["source", "instruction", "models", "completions", "correct_answers", "incorrect_answers"], num_proc=script_args.dataset_num_proc, ) dataset = dataset.filter(drop_long_prompt) dataset = dataset.train_test_split(test_size=0.05, seed=42) if script_args.push_to_hub: dataset.push_to_hub(script_args.repo_id) model_card.push_to_hub(script_args.repo_id, repo_type="dataset")