# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import Optional from datasets import load_dataset from huggingface_hub import ModelCard from transformers import HfArgumentParser @dataclass class ScriptArguments: r""" Arguments for the script. Args: model_name (`str`, *optional*, defaults to `"gpt-3.5-turbo"`): Language model to target. Possible values are: aspect (`str`, *optional*, defaults to `"helpfulness"`): Aspect to target. push_to_hub (`bool`, *optional*, defaults to `False`): Whether to push the dataset to the Hugging Face Hub. repo_id (`str`, *optional*, defaults to `"trl-lib/ultrafeedback-gpt-3.5-turbo-helpfulness"`): Hugging Face repository ID to push the dataset to. dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): Number of workers to use for dataset processing. """ model_name: str = field( default="gpt-3.5-turbo", metadata={ "help": "Language model to target.", "choices": [ "alpaca-7b", "bard", "falcon-40b-instruct", "gpt-3.5-turbo", "gpt-4", "llama-2-13b-chat", "llama-2-70b-chat", "llama-2-7b-chat", "mpt-30b-chat", "pythia-12b", "starchat", "ultralm-13b", "ultralm-65b", "vicuna-33b", "wizardlm-13b", "wizardlm-70b", "wizardlm-7b", ], }, ) aspect: str = field( default="helpfulness", metadata={ "help": "Aspect to target. Possible values are: 'helpfulness' (default), 'honesty', " "'instruction-following', 'truthfulness'.", "choices": ["helpfulness", "honesty", "instruction-following", "truthfulness"], }, ) push_to_hub: bool = field( default=False, metadata={"help": "Whether to push the dataset to the Hugging Face Hub."}, ) repo_id: str = field( default="trl-lib/ultrafeedback-gpt-3.5-turbo-helpfulness", metadata={"help": "Hugging Face repository ID to push the dataset to."}, ) dataset_num_proc: Optional[int] = field( default=None, metadata={"help": "Number of workers to use for dataset processing."}, ) def to_unpaired_preference(example, model_name, aspect): prompt = [{"role": "user", "content": example["instruction"]}] model_index = example["models"].index(model_name) response_content = example["completions"][model_index]["response"] completion = [{"role": "assistant", "content": response_content}] score = int(example["completions"][model_index]["annotations"][aspect]["Rating"]) label = score >= 5 return {"prompt": prompt, "completion": completion, "label": label} model_card = ModelCard(""" --- tags: [trl] --- # UltraFeedback GPT-3.5-Turbo Helpfulness Dataset ## Summary The UltraFeedback GPT-3.5-Turbo Helpfulness dataset contains processed user-assistant interactions filtered for helpfulness, derived from the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset. It is designed for fine-tuning and evaluating models in alignment tasks. ## Data Structure - **Format**: [Conversational](https://huggingface.co/docs/trl/main/dataset_formats#conversational) - **Type**: [Unpaired preference](https://huggingface.co/docs/trl/main/dataset_formats#unpaired-preference) Column: - `"prompt"`: The input question or instruction provided to the model. - `"completion"`: The model's response to the prompt. - `"label"`: A binary value indicating whether the response is sufficiently helpful. ## Generation script The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/ultrafeedback.py). """) if __name__ == "__main__": parser = HfArgumentParser(ScriptArguments) script_args = parser.parse_args_into_dataclasses()[0] dataset = load_dataset("openbmb/UltraFeedback", split="train") dataset = dataset.filter( lambda example: script_args.model_name in example["models"], batched=False, num_proc=script_args.dataset_num_proc, ) dataset = dataset.map( to_unpaired_preference, remove_columns=["source", "instruction", "models", "completions", "correct_answers", "incorrect_answers"], fn_kwargs={"model_name": script_args.model_name, "aspect": script_args.aspect}, num_proc=script_args.dataset_num_proc, ) dataset = dataset.train_test_split(test_size=0.05, seed=42) if script_args.push_to_hub: dataset.push_to_hub(script_args.repo_id) model_card.push_to_hub(script_args.repo_id, repo_type="dataset")