# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from trl import SFTTrainer class LayerSkipSFTTrainer(SFTTrainer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.early_exit_layer = 0 # initialize with 0 self.always_last_layer = True self.early_exit_loss_scale = 1.0 def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None): self.early_exit_layer = ( self.early_exit_layer % (model.config.num_hidden_layers - 1) ) + 1 # rotates between [1, num_hidden_layers-1] bs, seqlen = inputs.input_ids.shape labels = inputs.pop("labels") outputs = model(**inputs, output_hidden_states=True) hidden_state = outputs["hidden_states"][self.early_exit_layer].to(model.dtype) if self.early_exit_layer != model.config.num_hidden_layers: hidden_state = model.model.norm(hidden_state) logits = model.lm_head(hidden_state) loss_early = model.loss_function(logits=logits, labels=labels, vocab_size=model.vocab_size) if self.always_last_layer: loss_last = model.loss_function(logits=outputs["logits"], labels=labels, vocab_size=model.vocab_size) loss = self.early_exit_loss_scale * loss_early.to(loss_last.device) + 1.0 * loss_last # normalize loss scales loss = loss / (1.0 + self.early_exit_loss_scale) else: loss = loss_early return loss