# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import config import torch from custom_trainer import LayerSkipSFTTrainer from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer from trl import DataCollatorForCompletionOnlyLM, SFTConfig def formatting_prompts_func(example): text = f"### Instruction: {example['utterance']}\n ### Response: {example['semantic_parse']}" # Inject eos_token as a string before tokenization, because they are not always added # See: https://github.com/huggingface/transformers/issues/22794 and # https://github.com/huggingface/trl/issues/1623 if tokenizer.eos_token: # usually something like "" for GPT2 or "<|endoftext|>" text += f"{tokenizer.eos_token}" return text if __name__ == "__main__": # load the dataset print("[INFO] loading the dataset...") train_dataset = load_dataset(config.dataset_name, split="train") print(f"output_root_dir: {config.output_root_dir}") print(f"hub_model_id: {config.hub_model_id}") # load the model and tokenizer print("[INFO] loading the model and tokenizer...") model = AutoModelForCausalLM.from_pretrained(config.model_name, device_map="auto", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name, add_eos_token=True) # adding pad and eos tokens if not provided in the tokenizer if tokenizer.pad_token is None: # Add '[PAD]' token if it doesn't exist tokenizer.add_special_tokens({"pad_token": "[PAD]"}) model.resize_token_embeddings(len(tokenizer)) model.config.pad_token_id = tokenizer.pad_token_id if tokenizer.eos_token is None or tokenizer.eos_token == tokenizer.bos_token: # Add '[EOS]' token if it doesn't exist tokenizer.add_special_tokens({"eos_token": "[EOS]"}) model.resize_token_embeddings(len(tokenizer)) model.config.eos_token_id = tokenizer.eos_token_id response_template = " ### Response:" collator = DataCollatorForCompletionOnlyLM(response_template, tokenizer=tokenizer) args = SFTConfig( do_train=True, bf16=True, max_seq_length=None, per_device_train_batch_size=config.per_device_train_batch_size, gradient_accumulation_steps=config.gradient_accumulation_steps, learning_rate=config.learning_rate, packing=False, num_train_epochs=1.0, report_to="none", push_to_hub=True, hub_model_id=config.hub_model_id, output_dir=config.output_dir, logging_steps=500, save_steps=1000, save_total_limit=2, ) trainer = LayerSkipSFTTrainer( model, train_dataset=train_dataset, args=args, formatting_func=formatting_prompts_func, data_collator=collator, ) trainer.train()