# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Without dataset streaming: ``` accelerate launch examples/scripts/dpo_vlm.py \ --dataset_name HuggingFaceH4/rlaif-v_formatted \ --model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \ --per_device_train_batch_size 2 \ --gradient_accumulation_steps 32 \ --dataset_num_proc 32 \ --output_dir dpo_idefics_rlaif-v \ --bf16 \ --torch_dtype bfloat16 \ --gradient_checkpointing \ --use_peft \ --lora_target_modules=all-linear \ --report_to wandb ``` With dataset streaming: ``` accelerate launch examples/scripts/dpo_vlm.py \ --dataset_name HuggingFaceH4/rlaif-v_formatted \ --dataset_streaming \ --model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \ --per_device_train_batch_size 2 \ --max_steps 100 \ --gradient_accumulation_steps 32 \ --dataset_num_proc 32 \ --output_dir dpo_idefics_rlaif-v \ --bf16 \ --torch_dtype bfloat16 \ --gradient_checkpointing \ --use_peft \ --lora_target_modules=all-linear \ --report_to wandb ``` """ import torch from datasets import load_dataset from transformers import AutoModelForVision2Seq, AutoProcessor from trl import ( DPOConfig, DPOTrainer, ModelConfig, ScriptArguments, TrlParser, get_kbit_device_map, get_peft_config, get_quantization_config, ) if __name__ == "__main__": parser = TrlParser((ScriptArguments, DPOConfig, ModelConfig)) script_args, training_args, model_args = parser.parse_args_and_config() ################ # Model & Tokenizer ################ torch_dtype = ( model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) ) quantization_config = get_quantization_config(model_args) model_kwargs = dict( revision=model_args.model_revision, attn_implementation=model_args.attn_implementation, torch_dtype=torch_dtype, device_map=get_kbit_device_map() if quantization_config is not None else None, quantization_config=quantization_config, ) model = AutoModelForVision2Seq.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs, ) peft_config = get_peft_config(model_args) if peft_config is None: ref_model = AutoModelForVision2Seq.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs, ) else: ref_model = None processor = AutoProcessor.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, do_image_splitting=False ) tokenizer = processor.tokenizer # Set up the chat template if model.config.model_type == "idefics2": pass # the processor already has a valid chat template elif model.config.model_type == "paligemma": processor.chat_template = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}<|im_start|>{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] if item['type'] == 'text' %}{{ item['text'] }}<|im_end|>{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}""" elif model.config.model_type == "llava": processor.chat_template = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}{% endif %}{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}""" if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token if script_args.ignore_bias_buffers: # torch distributed hack model._ddp_params_and_buffers_to_ignore = [ name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool ] ################ # Dataset ################ dataset = load_dataset( script_args.dataset_name, name=script_args.dataset_config, streaming=script_args.dataset_streaming, ) ################ # Training ################ trainer = DPOTrainer( model, ref_model, args=training_args, train_dataset=dataset[script_args.dataset_train_split], eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, processing_class=processor, peft_config=peft_config, ) trainer.train() # Save and push to hub trainer.save_model(training_args.output_dir) if training_args.push_to_hub: trainer.push_to_hub(dataset_name=script_args.dataset_name)