# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import Optional from datasets import load_dataset from transformers import HfArgumentParser from vllm import LLM, SamplingParams from trl import HfPairwiseJudge, OpenAIPairwiseJudge """ Examples: python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/rloo_tldr --num_examples 1000 Model win rate: 31.40% python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/rloo_tldr --judge_model gpt-3.5-turbo-0125 --num_examples 1000 Model win rate: 51.60% python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/rloo_tldr --judge_model gpt-4o-mini --num_examples 1000 Model win rate: 51.20% python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/ppo_tldr --num_examples 1000 Model win rate: 46.30% python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/ppo_tldr --judge_model gpt-3.5-turbo-0125 --num_examples 1000 Model win rate: 52.50% python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/ppo_tldr --judge_model gpt-4o-mini --num_examples 1000 Model win rate: 63.00% """ @dataclass class ScriptArguments: r""" Arguments for the script. Args: model_name_or_path (`str`): Model name or path to the model to evaluate. judge_model (`str`, *optional*, defaults to `"meta-llama/Meta-Llama-3-70B-Instruct"`): Model name or path to the model to use as a judge. E.g., 'gpt-3.5-turbo-0125' or 'meta-llama/Meta-Llama-3-70B-Instruct'. num_examples (`int` or `None`, *optional*, defaults to `None`): Number of examples to evaluate. """ model_name_or_path: str = field(metadata={"help": "Model name or path to the model to evaluate."}) judge_model: str = field( default="meta-llama/Meta-Llama-3-70B-Instruct", metadata={ "help": "Model name or path to the model to use as a judge. E.g., 'gpt-3.5-turbo-0125' or " "'meta-llama/Meta-Llama-3-70B-Instruct'." }, ) num_examples: Optional[int] = field(default=None, metadata={"help": "Number of examples to evaluate."}) # Parse the arguments parser = HfArgumentParser(ScriptArguments) script_args = parser.parse_args_into_dataclasses()[0] # Load the dataset dataset = load_dataset("trl-lib/tldr", split="validation") if script_args.num_examples is not None: dataset = dataset.select(range(script_args.num_examples)) # Extract the prompts and reference completions prompts = dataset["prompt"] reference_completions = dataset["completion"] # Generate the model completions sampling_params = SamplingParams(temperature=0.0, top_p=0.95, max_tokens=200) # very generous max token length llm = LLM(model=script_args.model_name_or_path, tensor_parallel_size=1) outputs = llm.generate(prompts, sampling_params) model_completions = [output.outputs[0].text.strip() for output in outputs] # Judge the outputs if "gpt" in script_args.judge_model: judge = OpenAIPairwiseJudge(script_args.judge_model) else: judge = HfPairwiseJudge(script_args.judge_model) completions = [[c0, c1] for c0, c1 in zip(reference_completions, model_completions)] best_idxs = judge.judge(prompts, completions) model_win_rate = best_idxs.count(1) / len(best_idxs) print(f"Model win rate: {model_win_rate * 100:.2f}%")