# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Train Gemma-3 on the HuggingFaceH4/llava-instruct-mix-vsft dataset (single-image). accelerate launch \ --config_file examples/accelerate_configs/deepspeed_zero3.yaml \ examples/scripts/sft_vlm_gemma3.py \ --dataset_name HuggingFaceH4/llava-instruct-mix-vsft \ --model_name_or_path google/gemma-3-4b-it \ --per_device_train_batch_size 1 \ --gradient_accumulation_steps 1 \ --output_dir gemma-3-4b-it-trl-sft-llava-instruct-mix-vsft \ --bf16 \ --torch_dtype bfloat16 \ --use_peft \ --lora_target_modules all-linear \ --attn_implementation eager Train Gemma-3 on the FanqingM/MMIU-Benchmark dataset (multi-image). accelerate launch \ --config_file examples/accelerate_configs/deepspeed_zero3.yaml \ examples/scripts/sft_vlm_gemma3.py \ --dataset_name FanqingM/MMIU-Benchmark \ --dataset_train_split test \ --model_name_or_path google/gemma-3-4b-it \ --per_device_train_batch_size 1 \ --gradient_accumulation_steps 1 \ --output_dir gemma-3-4b-it-trl-sft-MMIU-Benchmark \ --bf16 \ --torch_dtype bfloat16 \ --use_peft \ --lora_target_modules all-linear --attn_implementation eager """ import io import os import zipfile import torch from datasets import DatasetDict, load_dataset from huggingface_hub import hf_hub_download, list_repo_files from PIL import Image from transformers import AutoModelForImageTextToText, AutoProcessor from trl import ( ModelConfig, ScriptArguments, SFTConfig, SFTTrainer, TrlParser, get_kbit_device_map, get_peft_config, get_quantization_config, ) # For multi-image example def process_vision_info(messages: list[dict]) -> list[Image.Image]: image_inputs = [] for msg in messages: content = msg.get("content", []) if not isinstance(content, list): content = [content] for element in content: if isinstance(element, dict) and ("image" in element or element.get("type") == "image"): if "image" in element: image = element["image"] else: image = element if image is not None: image = Image.open(io.BytesIO(image["bytes"])) image_inputs.append(image.convert("RGB")) return image_inputs def format_data(samples: dict[str, any]) -> dict[str, list]: formatted_samples = {"messages": []} for cont in range(len(samples["question"])): images = [] for img_path in samples["input_image_path"][cont]: try: with open(img_path, "rb") as f: img_bytes = f.read() image = Image.open(io.BytesIO(img_bytes)).convert("RGB") images.append({"type": "image", "image": image}) except Exception as e: print(f"Error processing image {img_path}: {e}") continue formatted_samples["messages"].append( [ {"role": "system", "content": [{"type": "text", "text": samples["context"][cont]}]}, {"role": "user", "content": images + [{"type": "text", "text": samples["question"][cont]}]}, {"role": "assistant", "content": [{"type": "text", "text": samples["output"][cont]}]}, ] ) return formatted_samples # For multi-image example def prepare_dataset(dataset: DatasetDict, dataset_name: str, dataset_train_split: str) -> DatasetDict: all_files = list_repo_files(dataset_name, repo_type="dataset") zip_files = [f for f in all_files if f.endswith(".zip")] for zip_filename in zip_files: zip_path = hf_hub_download(repo_id=dataset_name, filename=zip_filename, repo_type="dataset") extract_folder = zip_filename.replace(".zip", "") os.makedirs(extract_folder, exist_ok=True) with zipfile.ZipFile(zip_path, "r") as zip_ref: zip_ref.extractall(extract_folder) dataset = dataset.map(format_data, batched=True, batch_size=4, num_proc=16) return dataset def main(): parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig)) script_args, training_args, model_args = parser.parse_args_and_config() training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False) training_args.remove_unused_columns = False training_args.dataset_kwargs = {"skip_prepare_dataset": True} ################ # Model, Tokenizer & Processor ################ torch_dtype = ( model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) ) quantization_config = get_quantization_config(model_args) model_kwargs = dict( revision=model_args.model_revision, attn_implementation=model_args.attn_implementation, torch_dtype=torch_dtype, device_map=get_kbit_device_map() if quantization_config is not None else None, quantization_config=quantization_config, ) processor = AutoProcessor.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code ) processor.tokenizer.padding_side = "right" model = AutoModelForImageTextToText.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs ) def collate_fn(examples): texts = [ processor.apply_chat_template(example["messages"], tokenize=False, add_generation_prompt=False).strip() for example in examples ] if "images" in examples[0]: # single-image images = [[img.convert("RGB") for img in example["images"]] for example in examples] else: # multi-image images = [process_vision_info(example["messages"]) for example in examples] # Tokenize the texts and process the images batch = processor( text=texts, images=images, return_tensors="pt", padding=True ) # Encode texts and images into tensors # The labels are the input_ids, and we mask the padding tokens in the loss computation labels = batch["input_ids"].clone() # Clone input IDs for labels # Mask image tokens image_token_id = [ processor.tokenizer.convert_tokens_to_ids(processor.tokenizer.special_tokens_map["boi_token"]) ] # Mask tokens for not being used in the loss computation labels[labels == processor.tokenizer.pad_token_id] = -100 labels[labels == image_token_id] = -100 labels[labels == 262144] = -100 batch["labels"] = labels return batch # Return the prepared batch ################ # Dataset ################ dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) if script_args.dataset_name == "FanqingM/MMIU-Benchmark": dataset = prepare_dataset(dataset, script_args.dataset_name, script_args.dataset_train_split) ################ # Training ################ trainer = SFTTrainer( model=model, args=training_args, data_collator=collate_fn, train_dataset=dataset[script_args.dataset_train_split], eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, processing_class=processor.tokenizer, peft_config=get_peft_config(model_args), ) trainer.train() # Save and push to hub trainer.save_model(training_args.output_dir) if training_args.push_to_hub: trainer.push_to_hub(dataset_name=script_args.dataset_name) if trainer.accelerator.is_main_process: processor.push_to_hub(training_args.hub_model_id) if __name__ == "__main__": main()