# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import tempfile import unittest import pytest import torch from accelerate.utils.memory import release_memory from datasets import load_dataset from parameterized import parameterized from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.testing_utils import ( backend_empty_cache, require_liger_kernel, require_peft, require_torch_accelerator, torch_device, ) from trl import GRPOConfig, GRPOTrainer from .testing_constants import MODELS_TO_TEST @pytest.mark.slow @require_torch_accelerator class GRPOTrainerSlowTester(unittest.TestCase): def setUp(self): self.train_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train") self.eval_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="test") self.max_length = 128 def tearDown(self): gc.collect() backend_empty_cache(torch_device) gc.collect() @parameterized.expand(MODELS_TO_TEST) @require_liger_kernel def test_training_with_liger_grpo_loss(self, model_name): with tempfile.TemporaryDirectory() as tmp_dir: training_args = GRPOConfig( output_dir=tmp_dir, per_device_train_batch_size=3, num_generations=3, use_liger_loss=True, max_completion_length=self.max_length, report_to="none", logging_strategy="no", ) model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token trainer = GRPOTrainer( model=model, reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5", args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, processing_class=tokenizer, ) from liger_kernel.chunked_loss import LigerFusedLinearGRPOLoss assert isinstance(trainer.liger_grpo_loss, LigerFusedLinearGRPOLoss) previous_trainable_params = {n: param.clone() for n, param in model.named_parameters()} trainer.train() for n, param in previous_trainable_params.items(): new_param = model.get_parameter(n) self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.") release_memory(model, trainer) @parameterized.expand(MODELS_TO_TEST) @require_liger_kernel @require_peft def test_training_with_liger_grpo_loss_and_peft(self, model_name): from peft import LoraConfig, TaskType with tempfile.TemporaryDirectory() as tmp_dir: training_args = GRPOConfig( output_dir=tmp_dir, per_device_train_batch_size=3, num_generations=3, use_liger_loss=True, max_completion_length=self.max_length, report_to="none", logging_strategy="no", ) model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token if tokenizer.pad_token is None else tokenizer.pad_token # Configure PEFT with LoRA peft_config = LoraConfig( task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, target_modules=["q_proj", "v_proj"], ) trainer = GRPOTrainer( model=model, reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5", args=training_args, train_dataset=self.train_dataset, eval_dataset=self.eval_dataset, processing_class=tokenizer, peft_config=peft_config, ) from liger_kernel.chunked_loss import LigerFusedLinearGRPOLoss assert isinstance(trainer.liger_grpo_loss, LigerFusedLinearGRPOLoss) # Verify PEFT adapter is properly initialized from peft import PeftModel self.assertTrue(isinstance(trainer.model, PeftModel), "Model should be wrapped with PEFT") # Store adapter weights before training previous_trainable_params = { n: param.clone() for n, param in trainer.model.named_parameters() if param.requires_grad } self.assertTrue(len(previous_trainable_params) > 0, "No trainable parameters found in PEFT model") trainer.train() # Verify adapter weights have changed after training for n, param in previous_trainable_params.items(): new_param = trainer.model.get_parameter(n) self.assertFalse(torch.equal(param, new_param), f"Parameter {n} has not changed.") release_memory(model, trainer)