# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from torch import nn from transformers import AutoModelForCausalLM from transformers.testing_utils import require_peft, require_torch_accelerator, torch_device from transformers.utils import is_peft_available from trl.models.activation_offloading import NoOpManager, OffloadActivations if is_peft_available(): from peft import LoraConfig, get_peft_model class TestActivationOffloading(unittest.TestCase): @require_torch_accelerator @require_peft def test_offloading_with_peft_models(self) -> None: """Test that activation offloading works with PEFT models.""" model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" model = AutoModelForCausalLM.from_pretrained(model_id).to(torch_device) peft_config = LoraConfig( lora_alpha=16, lora_dropout=0.1, r=8, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, peft_config) inp = torch.randint(0, 100, (2, 10), device=torch_device) # First forward-backward pass without offloading torch.manual_seed(42) loss = model(inp, labels=inp).loss loss.backward() # Store gradients - only from trainable parameters grads_original = [] for name, param in model.named_parameters(): if param.requires_grad and param.grad is not None: grads_original.append((name, param.grad.clone())) # Reset gradients for p in model.parameters(): if p.grad is not None: p.grad = None # Second forward-backward pass with offloading torch.manual_seed(42) with OffloadActivations(): loss_c = model(inp, labels=inp).loss loss_c.backward() # Compare gradients - only trainable parameters for name_orig, grad_orig in grads_original: for name_param, param in model.named_parameters(): if name_param == name_orig and param.requires_grad and param.grad is not None: self.assertTrue( torch.allclose(grad_orig, param.grad, rtol=1e-4, atol=1e-5), f"Gradient mismatch for {name_orig}", ) @require_torch_accelerator def test_noop_manager_with_offloading(self): model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" model = AutoModelForCausalLM.from_pretrained(model_id).to(torch_device) inp = torch.randint(0, 100, (2, 10), device=torch_device) # Run with offloading but disable for specific section with OffloadActivations(): # First forward-backward with normal offloading torch.manual_seed(42) out1 = model(inp, labels=inp) out1.loss.backward() grads1 = [p.grad.clone() for p in model.parameters()] # Reset grads for p in model.parameters(): p.grad = None # Second forward-backward with NoOpManager with NoOpManager(): torch.manual_seed(42) out2 = model(inp, labels=inp) out2.loss.backward() grads2 = [p.grad.clone() for p in model.parameters()] # Gradients should match as NoOpManager should have prevented offloading for g1, g2 in zip(grads1, grads2): self.assertTrue(torch.allclose(g1, g2, rtol=1e-4, atol=1e-5)) @require_torch_accelerator def test_min_offload_size(self): """Test that tensors smaller than min_offload_size aren't offloaded""" model = nn.Sequential( nn.Linear(5, 5), # Small layer that shouldn't be offloaded nn.Linear(5, 1000), # Large layer that should be offloaded ).to(torch_device) inp = torch.randn(2, 5, device=torch_device) with OffloadActivations(min_offload_size=1000): out = model(inp) out.sum().backward() # The test passes if no errors occur, as we're mainly testing # that the logic handles both offloaded and non-offloaded tensors @require_torch_accelerator def test_real_hf_model(self): """Test with an actual HuggingFace model""" model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" model = AutoModelForCausalLM.from_pretrained(model_id).to(torch_device) # Create small input inp = torch.randint(0, 100, (2, 10), device=torch_device) # Baseline without offloading torch.manual_seed(42) out1 = model(inp, labels=inp).loss out1.backward() grads1 = [p.grad.clone() for p in model.parameters()] # Reset grads for p in model.parameters(): p.grad = None # With offloading with OffloadActivations(): torch.manual_seed(42) out2 = model(inp, labels=inp).loss out2.backward() grads2 = [p.grad.clone() for p in model.parameters()] # Check outputs and gradients match self.assertTrue(torch.allclose(out1, out2, rtol=1e-5)) for g1, g2 in zip(grads1, grads2): self.assertTrue(torch.allclose(g1, g2, rtol=1e-5))