# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from trl.trainer.dpo_trainer import DataCollatorForPreference class TestDataCollatorForPreference(unittest.TestCase): def setUp(self): self.collator = DataCollatorForPreference(pad_token_id=0) def assertTensorEqual(self, tensor1, tensor2): self.assertTrue(torch.equal(tensor1, tensor2), f"Tensors are not equal:\n{tensor1}\n{tensor2}") def test_padding_behavior(self): examples = [ {"prompt_input_ids": [1, 2, 3], "chosen_input_ids": [4, 5], "rejected_input_ids": [6]}, {"prompt_input_ids": [7, 8], "chosen_input_ids": [9, 10], "rejected_input_ids": [11, 12, 13]}, ] output = self.collator.torch_call(examples) expected_prompt_input_ids = torch.tensor([[1, 2, 3], [0, 7, 8]]) expected_prompt_attention_mask = torch.tensor([[1, 1, 1], [0, 1, 1]]) expected_chosen_input_ids = torch.tensor([[4, 5], [9, 10]]) expected_chosen_attention_mask = torch.tensor([[1, 1], [1, 1]]) expected_rejected_input_ids = torch.tensor([[6, 0, 0], [11, 12, 13]]) expected_rejected_attention_mask = torch.tensor([[1, 0, 0], [1, 1, 1]]) self.assertTensorEqual(output["prompt_input_ids"], expected_prompt_input_ids) self.assertTensorEqual(output["prompt_attention_mask"], expected_prompt_attention_mask) self.assertTensorEqual(output["chosen_input_ids"], expected_chosen_input_ids) self.assertTensorEqual(output["chosen_attention_mask"], expected_chosen_attention_mask) self.assertTensorEqual(output["rejected_input_ids"], expected_rejected_input_ids) self.assertTensorEqual(output["rejected_attention_mask"], expected_rejected_attention_mask) def test_optional_fields(self): examples = [ { "prompt_input_ids": [1], "chosen_input_ids": [2], "rejected_input_ids": [3], "pixel_values": [[[0.1, 0.2], [0.3, 0.4]]], # Example 3D tensor (1x2x2) }, { "prompt_input_ids": [4], "chosen_input_ids": [5], "rejected_input_ids": [6], "pixel_values": [[[0.5, 0.6], [0.7, 0.8]]], # Example 3D tensor (1x2x2) }, ] output = self.collator.torch_call(examples) expected_pixel_values = torch.tensor( [ [[[0.1, 0.2], [0.3, 0.4]]], [[[0.5, 0.6], [0.7, 0.8]]], ] ) # Shape: (2, 1, 2, 2) self.assertTensorEqual(output["pixel_values"], expected_pixel_values)