# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from trl.core import masked_mean, masked_var, masked_whiten class CoreTester(unittest.TestCase): """ A wrapper class for testing core utils functions """ def setUp(self): self.test_input = torch.Tensor([1, 2, 3, 4]) self.test_mask = torch.Tensor([0, 1, 1, 0]) self.test_input_unmasked = self.test_input[1:3] def test_masked_mean(self): self.assertEqual(torch.mean(self.test_input_unmasked), masked_mean(self.test_input, self.test_mask)) def test_masked_var(self): self.assertEqual(torch.var(self.test_input_unmasked), masked_var(self.test_input, self.test_mask)) def test_masked_whiten(self): def whiten(values: torch.Tensor) -> torch.Tensor: mean, var = torch.mean(values), torch.var(values) return (values - mean) * torch.rsqrt(var + 1e-8) whiten_unmasked = whiten(self.test_input_unmasked) whiten_masked = masked_whiten(self.test_input, self.test_mask)[1:3] diffs = (whiten_unmasked - whiten_masked).sum() self.assertLess(abs(diffs.item()), 0.00001)