# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from functools import partial import torch from datasets import Dataset from parameterized import parameterized from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer, TrainingArguments from trl import IterativeSFTTrainer class IterativeTrainerTester(unittest.TestCase): def setUp(self): self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" self.model = AutoModelForCausalLM.from_pretrained(self.model_id) self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) self.tokenizer.pad_token = self.tokenizer.eos_token # get t5 as seq2seq example: model_id = "trl-internal-testing/tiny-T5ForConditionalGeneration" self.t5_model = AutoModelForSeq2SeqLM.from_pretrained(model_id) self.t5_tokenizer = AutoTokenizer.from_pretrained(model_id) def _init_tensor_dummy_dataset(self): dummy_dataset_dict = { "input_ids": [ torch.tensor([5303, 3621, 3666, 1438, 318]), torch.tensor([3666, 1438, 318, 3666, 1438, 318]), torch.tensor([5303, 3621, 3666, 1438, 318]), ], "attention_mask": [ torch.tensor([1, 1, 1, 1, 1]), torch.tensor([1, 1, 1, 1, 1, 1]), torch.tensor([1, 1, 1, 1, 1]), ], "labels": [ torch.tensor([5303, 3621, 3666, 1438, 318]), torch.tensor([3666, 1438, 318, 3666, 1438, 318]), torch.tensor([5303, 3621, 3666, 1438, 318]), ], } dummy_dataset = Dataset.from_dict(dummy_dataset_dict) dummy_dataset.set_format("torch") return dummy_dataset def _init_textual_dummy_dataset(self): dummy_dataset_dict = { "texts": ["Testing the IterativeSFTTrainer.", "This is a test of the IterativeSFTTrainer"], "texts_labels": ["Testing the IterativeSFTTrainer.", "This is a test of the IterativeSFTTrainer"], } dummy_dataset = Dataset.from_dict(dummy_dataset_dict) dummy_dataset.set_format("torch") return dummy_dataset @parameterized.expand( [ ["qwen", "tensor"], ["qwen", "text"], ["t5", "tensor"], ["t5", "text"], ] ) def test_iterative_step_from_tensor(self, model_name, input_name): with tempfile.TemporaryDirectory() as tmp_dir: # initialize dataset if input_name == "tensor": dummy_dataset = self._init_tensor_dummy_dataset() inputs = { "input_ids": dummy_dataset["input_ids"], "attention_mask": dummy_dataset["attention_mask"], "labels": dummy_dataset["labels"], } else: dummy_dataset = self._init_textual_dummy_dataset() inputs = { "texts": dummy_dataset["texts"], "texts_labels": dummy_dataset["texts_labels"], } if model_name == "qwen": model = self.model tokenizer = self.tokenizer else: model = self.t5_model tokenizer = self.t5_tokenizer training_args = TrainingArguments( output_dir=tmp_dir, per_device_train_batch_size=2, max_steps=2, learning_rate=1e-3, report_to="none", ) iterative_trainer = IterativeSFTTrainer(model=model, args=training_args, processing_class=tokenizer) iterative_trainer.optimizer.zero_grad = partial(iterative_trainer.optimizer.zero_grad, set_to_none=False) iterative_trainer.step(**inputs) for param in iterative_trainer.model.parameters(): self.assertIsNotNone(param.grad)