# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from transformers import AutoModelForCausalLM, GenerationConfig from trl.models.modeling_base import GeometricMixtureWrapper, create_reference_model class TestGeometricMixtureWrapper(unittest.TestCase): def setUp(self): model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" self.model = AutoModelForCausalLM.from_pretrained(model_id) self.ref_model = create_reference_model(self.model) self.generation_config = GenerationConfig.from_pretrained(model_id) self.mixture_coef = 0.5 self.wrapper = GeometricMixtureWrapper( self.model, self.ref_model, self.generation_config, mixture_coef=self.mixture_coef ) def test_forward(self): input_ids = torch.tensor([[1, 2, 3, 4, 5]]) attention_mask = torch.ones_like(input_ids) output = self.wrapper(input_ids=input_ids, attention_mask=attention_mask) self.assertIsNotNone(output) self.assertTrue(hasattr(output, "logits")) self.assertEqual(output.logits.shape, (1, 5, self.model.config.vocab_size)) def test_mixture_coefficient(self): input_ids = torch.tensor([[1, 2, 3, 4, 5]]) attention_mask = torch.ones_like(input_ids) with torch.no_grad(): model_output = self.model(input_ids=input_ids, attention_mask=attention_mask) ref_model_output = self.ref_model(input_ids=input_ids, attention_mask=attention_mask) wrapper_output = self.wrapper(input_ids=input_ids, attention_mask=attention_mask) expected_logits = torch.nn.functional.log_softmax( self.mixture_coef * ref_model_output.logits + (1 - self.mixture_coef) * model_output.logits, dim=-1 ) self.assertTrue(torch.allclose(wrapper_output.logits, expected_logits, atol=1e-5)) def test_prepare_inputs_for_generation(self): input_ids = torch.tensor([[1, 2, 3, 4, 5]]) attention_mask = torch.ones_like(input_ids) inputs = self.wrapper.prepare_inputs_for_generation(input_ids, attention_mask=attention_mask, use_cache=True) self.assertIn("input_ids", inputs) self.assertIn("attention_mask", inputs) self.assertFalse(inputs.get("use_cache", False))