# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest import torch from transformers import AutoModelForCausalLM from transformers.testing_utils import ( require_peft, require_torch_gpu_if_bnb_not_multi_backend_enabled, ) from transformers.utils import is_peft_available from trl import AutoModelForCausalLMWithValueHead if is_peft_available(): from peft import LoraConfig, get_peft_model @require_peft class PeftModelTester(unittest.TestCase): def setUp(self): self.causal_lm_model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" self.lora_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) def test_create_peft_model(self): r""" Simply creates a peft model and checks that it can be loaded. """ causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) pretrained_model = get_peft_model(causal_lm_model, self.lora_config) _ = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) def test_peft_requires_grad(self): r""" Check that the value head of the returned model has requires_grad=True. """ causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) pretrained_model = get_peft_model(causal_lm_model, self.lora_config) model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) # Check that the value head has requires_grad=True self.assertTrue(model.v_head.summary.weight.requires_grad) def test_check_peft_model_nb_trainable_params(self): r""" Check that the number of trainable parameters is correct. """ causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) pretrained_model = get_peft_model(causal_lm_model, self.lora_config) model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) # Check that the number of trainable parameters is correct nb_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) self.assertEqual(nb_trainable_params, 905) # Check that the number of trainable param for the non-peft model is correct non_peft_model = AutoModelForCausalLMWithValueHead.from_pretrained(self.causal_lm_model_id) nb_trainable_params = sum(p.numel() for p in non_peft_model.parameters() if p.requires_grad) self.assertEqual(nb_trainable_params, 2428641) def test_create_peft_model_from_config(self): r""" Simply creates a peft model and checks that it can be loaded. """ trl_model = AutoModelForCausalLMWithValueHead.from_pretrained( self.causal_lm_model_id, peft_config=self.lora_config ) # Check that the number of trainable parameters is correct nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) self.assertEqual(nb_trainable_params, 905) causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(causal_lm_model, peft_config=self.lora_config) # Check that the number of trainable parameters is correct nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) self.assertEqual(nb_trainable_params, 905) @require_torch_gpu_if_bnb_not_multi_backend_enabled def test_create_bnb_peft_model_from_config(self): r""" Simply creates a peft model and checks that it can be loaded. """ from bitsandbytes.nn import Linear8bitLt trl_model = AutoModelForCausalLMWithValueHead.from_pretrained( self.causal_lm_model_id, peft_config=self.lora_config, load_in_8bit=True ) # Check that the number of trainable parameters is correct nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) self.assertEqual(nb_trainable_params, 905) self.assertIsInstance(trl_model.pretrained_model.model.model.layers[0].mlp.gate_proj, Linear8bitLt) causal_lm_model = AutoModelForCausalLM.from_pretrained( self.causal_lm_model_id, load_in_8bit=True, device_map="auto" ) trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(causal_lm_model, peft_config=self.lora_config) # Check that the number of trainable parameters is correct nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad) self.assertEqual(nb_trainable_params, 905) self.assertIsInstance(trl_model.pretrained_model.model.model.layers[0].mlp.gate_proj, Linear8bitLt) def test_save_pretrained_peft(self): r""" Check that the model can be saved and loaded properly. """ causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) pretrained_model = get_peft_model(causal_lm_model, self.lora_config) model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(tmp_dir) # check that the files `adapter_model.safetensors` and `adapter_config.json` are in the directory self.assertTrue( os.path.isfile(f"{tmp_dir}/adapter_model.safetensors"), f"{tmp_dir}/adapter_model.safetensors does not exist", ) self.assertTrue( os.path.exists(f"{tmp_dir}/adapter_config.json"), f"{tmp_dir}/adapter_config.json does not exist" ) # check also for `pytorch_model.bin` and make sure it only contains `v_head` weights self.assertTrue( os.path.exists(f"{tmp_dir}/pytorch_model.bin"), f"{tmp_dir}/pytorch_model.bin does not exist" ) # check that only keys that starts with `v_head` are in the dict maybe_v_head = torch.load(f"{tmp_dir}/pytorch_model.bin", weights_only=True) self.assertTrue( all(k.startswith("v_head") for k in maybe_v_head.keys()), f"keys in {tmp_dir}/pytorch_model.bin do not start with `v_head`", ) model_from_pretrained = AutoModelForCausalLMWithValueHead.from_pretrained(tmp_dir) # check all the weights are the same for p1, p2 in zip(model.named_parameters(), model_from_pretrained.named_parameters()): self.assertTrue(torch.allclose(p1[1], p2[1]), f"{p1[0]} != {p2[0]}") def test_load_pretrained_peft(self): r""" Check that the model saved with peft class interface can be loaded properly. """ causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) pretrained_model = get_peft_model(causal_lm_model, self.lora_config) model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model) with tempfile.TemporaryDirectory() as tmp_dir: pretrained_model.save_pretrained(tmp_dir) model_from_pretrained = AutoModelForCausalLMWithValueHead.from_pretrained(tmp_dir) # check that the files `adapter_model.safetensors` and `adapter_config.json` are in the directory self.assertTrue( os.path.isfile(f"{tmp_dir}/adapter_model.safetensors"), f"{tmp_dir}/adapter_model.safetensors does not exist", ) self.assertTrue( os.path.exists(f"{tmp_dir}/adapter_config.json"), f"{tmp_dir}/adapter_config.json does not exist" ) # check all the weights are the same for p1, p2 in zip(model.named_parameters(), model_from_pretrained.named_parameters()): if p1[0] not in ["v_head.summary.weight", "v_head.summary.bias"]: self.assertTrue(torch.allclose(p1[1], p2[1]), f"{p1[0]} != {p2[0]}") def test_continue_training_peft_model(self): r""" Load peft and checks that it can continue training. """ causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id) pretrained_model = get_peft_model(causal_lm_model, self.lora_config) with tempfile.TemporaryDirectory() as tmp_dir: pretrained_model.save_pretrained(tmp_dir) # set is_trainable to True model = AutoModelForCausalLMWithValueHead.from_pretrained(tmp_dir, is_trainable=True) # Check that the number of trainable parameters is correct nb_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) self.assertEqual(nb_trainable_params, 905)