# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from unittest.mock import MagicMock import torch from datasets import Dataset, load_dataset from parameterized import parameterized from transformers import AutoModelForTokenClassification, AutoTokenizer, PreTrainedTokenizerBase from transformers.testing_utils import require_peft from transformers.utils import is_peft_available from trl import PRMConfig, PRMTrainer if is_peft_available(): from peft import LoraConfig, TaskType class TestTokenizeRow(unittest.TestCase): def setUp(self): # Set up the mock tokenizer with specific behaviors self.tokenizer = MagicMock(spec=PreTrainedTokenizerBase) self.tokenizer.bos_token_id = 0 self.tokenizer.eos_token_id = 2 def mock_encode(text, add_special_tokens): token_map = { "Which number is larger, 9.8 or 9.11?": [465, 6766, 318, 298], "11 is greater than 8.": [4, 322, 12], "Hence, 9.11 > 9.8.": [4995, 11, 22], "\n": [1030], "\n\n": [1030, 1030], } return token_map[text] def mock_tokenizer_call(text, add_special_tokens): return {"input_ids": mock_encode(text, add_special_tokens)} self.tokenizer.encode.side_effect = mock_encode self.tokenizer.side_effect = mock_tokenizer_call def test_tokenize_row_no_truncation(self): # Define the input features features = { "prompt": "Which number is larger, 9.8 or 9.11?", "completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."], "labels": [True, False], } # Call the method with no truncation result = PRMTrainer.tokenize_row( features=features, tokenizer=self.tokenizer, step_separator="\n", max_length=None, max_prompt_length=None, max_completion_length=None, train_on_last_step_only=False, is_eval=False, ) self.assertEqual( result, { "input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 4995, 11, 22, 1030], "labels": [-100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, 0], }, ) def test_tokenize_row_train_on_last_step_only(self): # Define the input features features = { "prompt": "Which number is larger, 9.8 or 9.11?", "completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."], "labels": [True, False], } result = PRMTrainer.tokenize_row( features=features, tokenizer=self.tokenizer, step_separator="\n", max_length=None, max_prompt_length=None, max_completion_length=None, train_on_last_step_only=True, is_eval=False, ) self.assertEqual( result, { "input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 4995, 11, 22, 1030], "labels": [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0], }, ) def test_tokenize_row_prompt_truncation(self): # Define the input features features = { "prompt": "Which number is larger, 9.8 or 9.11?", "completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."], "labels": [True, False], } # Call the method with truncation on the completion result = PRMTrainer.tokenize_row( features=features, tokenizer=self.tokenizer, step_separator="\n", max_length=None, max_prompt_length=3, max_completion_length=None, train_on_last_step_only=False, is_eval=False, ) self.assertEqual( result, { "input_ids": [6766, 318, 298, 4, 322, 12, 1030, 4995, 11, 22, 1030], "labels": [-100, -100, -100, -100, -100, -100, 1, -100, -100, -100, 0], }, ) def test_tokenize_row_completion_truncation(self): # Define the input features features = { "prompt": "Which number is larger, 9.8 or 9.11?", "completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."], "labels": [True, False], } # Call the method with truncation on the completion result = PRMTrainer.tokenize_row( features=features, tokenizer=self.tokenizer, step_separator="\n", max_length=None, max_prompt_length=None, max_completion_length=6, train_on_last_step_only=False, is_eval=False, ) self.assertEqual( result, { "input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 4995, 11], "labels": [-100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100], }, ) def test_tokenize_row_prompt_completion_truncation(self): # Define the input features features = { "prompt": "Which number is larger, 9.8 or 9.11?", "completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."], "labels": [True, False], } # Call the method with truncation on the prompt and completion result = PRMTrainer.tokenize_row( features=features, tokenizer=self.tokenizer, step_separator="\n", max_length=9, max_prompt_length=None, max_completion_length=None, train_on_last_step_only=False, is_eval=False, ) self.assertEqual( result, { "input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030], "labels": [-100, -100, -100, -100, -100, -100, -100, -100, 1], }, ) def test_tokenize_row_multi_token_separator(self): # Define the input features features = { "prompt": "Which number is larger, 9.8 or 9.11?", "completions": ["11 is greater than 8.", "Hence, 9.11 > 9.8."], "labels": [True, False], } # Call the method using multiple tokens as step_separator result = PRMTrainer.tokenize_row( features=features, tokenizer=self.tokenizer, step_separator="\n\n", max_length=None, max_prompt_length=None, max_completion_length=None, train_on_last_step_only=False, is_eval=False, ) self.assertEqual( result, { "input_ids": [0, 465, 6766, 318, 298, 4, 322, 12, 1030, 1030, 4995, 11, 22, 1030, 1030], "labels": [-100, -100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, -100, 0], }, ) class PRMTrainerTester(unittest.TestCase): def setUp(self): model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" self.model = AutoModelForTokenClassification.from_pretrained(model_id) self.tokenizer = AutoTokenizer.from_pretrained(model_id) @parameterized.expand([True, False]) def test_train_full(self, train_on_last_step_only): with tempfile.TemporaryDirectory() as tmp_dir: dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_stepwise_supervision", split="train") training_args = PRMConfig( output_dir=tmp_dir, report_to="none", train_on_last_step_only=train_on_last_step_only, ) trainer = PRMTrainer( model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset ) previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} trainer.train() self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) # Check that the parameters have changed for n, param in previous_trainable_params.items(): new_param = trainer.model.get_parameter(n) if param.sum() != 0: # ignore 0 biases self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12)) def test_train_full_pretokenized(self): with tempfile.TemporaryDirectory() as tmp_dir: dummy_dataset = Dataset.from_dict( { "labels": [ [-100, -100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 1], [-100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 1, -100, -100, -100, -100, 0], [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 1], [-100, -100, -100, -100, -100, -100, -100, 1, -100, -100, 1], [-100, -100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, 0], [-100, -100, -100, -100, -100, -100, -100, -100, -100, 1], [-100, -100, -100, -100, -100, -100, -100, -100, -100, 0], [-100, -100, -100, -100, -100, -100, -100, -100, -100, 1, -100, -100, -100, -100, -100, 0], [-100, -100, -100, -100, -100, -100, -100, -100, 0, -100, -100, 0], [-100, -100, -100, -100, -100, -100, 0, -100, -100, -100, -100, 0], [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 1], [-100, -100, -100, -100, -100, -100, 0], [-100, -100, -100, -100, -100, -100, -100, -100, 1], [-100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, -100, 0], ], "input_ids": [ [46518, 374, 2664, 1091, 11, 1077, 752, 1744, 1112, 198, 27261, 13, 198], [98923, 374, 2664, 1091, 11, 315, 3308, 11, 198, 17995, 13, 198, 1576, 31273, 12850, 13, 198], [16374, 374, 2664, 1091, 1112, 1077, 594, 2506, 432, 6770, 11, 198, 6351, 13, 198], [31137, 374, 2664, 1091, 979, 4362, 11, 198, 16965, 13, 198], [31019, 374, 2664, 1091, 304, 3793, 315, 5944, 11, 198, 24034, 13, 198], [98491, 374, 2664, 1091, 1112, 5310, 369, 91494, 13, 198], [4418, 2897, 14579, 5310, 979, 3800, 1349, 432, 13, 198], [20366, 5048, 7629, 944, 3281, 3322, 11, 7241, 1112, 198, 807, 1795, 279, 5601, 13, 198], [15802, 14976, 487, 33327, 1045, 31787, 63443, 11, 198, 52400, 13, 198], [13877, 1265, 2581, 1494, 49394, 11, 198, 7241, 20975, 91681, 13, 198], [641, 279, 3579, 315, 71768, 11, 25066, 279, 61361, 311, 7942, 13, 198], [7039, 374, 2664, 1091, 2937, 13, 198], [26155, 374, 3545, 2664, 1091, 34933, 26537, 13, 198], [2679, 279, 8129, 374, 4135, 311, 10339, 11, 432, 2578, 387, 264, 1661, 2884, 13, 198], ], } ) training_args = PRMConfig(output_dir=tmp_dir, report_to="none") trainer = PRMTrainer( model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset ) previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} trainer.train() self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) # Check that the parameters have changed for n, param in previous_trainable_params.items(): new_param = trainer.model.get_parameter(n) if param.sum() != 0: # ignore 0 biases self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12)) @require_peft def test_train_lora(self): peft_config = LoraConfig( task_type=TaskType.TOKEN_CLS, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, ) with tempfile.TemporaryDirectory() as tmp_dir: dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_stepwise_supervision", split="train") training_args = PRMConfig(output_dir=tmp_dir, max_steps=3, report_to="none") trainer = PRMTrainer( model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset, peft_config=peft_config, ) previous_trainable_params = {} previous_non_trainable_params = {} # due to a change in the way the modules to save are dealt in PEFT. trainable_params_name = ["lora", "modules_to_save"] # check gradients are not None for n, param in trainer.model.named_parameters(): if any(t in n for t in trainable_params_name): previous_trainable_params[n] = param.clone() else: previous_non_trainable_params[n] = param.clone() trainer.train() self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"]) # Check that the parameters have changed for n, param in previous_trainable_params.items(): new_param = trainer.model.get_parameter(n) self.assertFalse(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12)) # Check that the non trainable parameters have not changed for n, param in previous_non_trainable_params.items(): new_param = trainer.model.get_parameter(n) self.assertTrue(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12)) def test_tags(self): with tempfile.TemporaryDirectory() as tmp_dir: dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_stepwise_supervision", split="train") training_args = PRMConfig(output_dir=tmp_dir, report_to="none") trainer = PRMTrainer( model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset ) self.assertEqual(trainer.model.model_tags, trainer._tag_names)