# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import torch from datasets import Dataset, load_dataset from transformers import AutoModelForSequenceClassification, AutoTokenizer from transformers.testing_utils import require_peft from transformers.utils import is_peft_available from trl import RewardConfig, RewardTrainer, maybe_apply_chat_template from trl.trainer.reward_trainer import _tokenize if is_peft_available(): from peft import LoraConfig, TaskType class RewardTrainerTester(unittest.TestCase): def setUp(self): self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) self.model = AutoModelForSequenceClassification.from_pretrained(self.model_id) self.model.config.pad_token_id = self.tokenizer.pad_token_id def test_preprocessing_conversational(self): with tempfile.TemporaryDirectory() as tmp_dir: dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train") training_args = RewardConfig(output_dir=tmp_dir, report_to="none") trainer = RewardTrainer( model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset ) dummy_dataset = dummy_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": self.tokenizer}) dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": self.tokenizer}) self.assertDictEqual(trainer.train_dataset[:], dummy_dataset[:]) def test_preprocessing_standard(self): # No chat template, so we load a fresh tokenizer tokenizer = AutoTokenizer.from_pretrained(self.model_id) with tempfile.TemporaryDirectory() as tmp_dir: dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train") training_args = RewardConfig(output_dir=tmp_dir, report_to="none") trainer = RewardTrainer( model=self.model, args=training_args, processing_class=tokenizer, train_dataset=dummy_dataset ) dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": tokenizer}) self.assertDictEqual(trainer.train_dataset[:], dummy_dataset[:]) def test_train_full(self): with tempfile.TemporaryDirectory() as tmp_dir: dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train") training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none") trainer = RewardTrainer( model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset ) previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} trainer.train() self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) # Check that the parameters have changed for n, param in previous_trainable_params.items(): new_param = trainer.model.get_parameter(n) if param.sum() != 0: # ignore 0 biases self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12)) def test_train_full_pretokenized(self): with tempfile.TemporaryDirectory() as tmp_dir: dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train") dummy_dataset = dummy_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": self.tokenizer}) dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": self.tokenizer}) training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none") trainer = RewardTrainer( model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset ) previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()} trainer.train() self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"]) # Check that the parameters have changed for n, param in previous_trainable_params.items(): new_param = trainer.model.get_parameter(n) if param.sum() != 0: # ignore 0 biases self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12)) @require_peft def test_train_lora(self): peft_config = LoraConfig( task_type=TaskType.SEQ_CLS, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, ) with tempfile.TemporaryDirectory() as tmp_dir: dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train") training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none") trainer = RewardTrainer( model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset, peft_config=peft_config, ) previous_trainable_params = {} previous_non_trainable_params = {} # due to a change in the way the modules to save are dealt in PEFT. trainable_params_name = ["lora", "modules_to_save"] # check gradients are not None for n, param in trainer.model.named_parameters(): if any(t in n for t in trainable_params_name): previous_trainable_params[n] = param.clone() else: previous_non_trainable_params[n] = param.clone() trainer.train() self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"]) # Check that the parameters have changed for n, param in previous_trainable_params.items(): new_param = trainer.model.get_parameter(n) self.assertFalse(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12)) # Check that the non trainable parameters have not changed for n, param in previous_non_trainable_params.items(): new_param = trainer.model.get_parameter(n) self.assertTrue(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12)) @require_peft def test_train_lora_pretokenized(self): peft_config = LoraConfig( task_type=TaskType.SEQ_CLS, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, ) with tempfile.TemporaryDirectory() as tmp_dir: dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train") dummy_dataset = dummy_dataset.map(maybe_apply_chat_template, fn_kwargs={"tokenizer": self.tokenizer}) dummy_dataset = dummy_dataset.map(_tokenize, batched=True, fn_kwargs={"tokenizer": self.tokenizer}) training_args = RewardConfig(output_dir=tmp_dir, max_steps=3, report_to="none") trainer = RewardTrainer( model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset, peft_config=peft_config, ) previous_trainable_params = {} previous_non_trainable_params = {} # due to a change in the way the modules to save are dealt in PEFT. trainable_params_name = ["lora", "modules_to_save"] # check gradients are not None for n, param in trainer.model.named_parameters(): if any(t in n for t in trainable_params_name): previous_trainable_params[n] = param.clone() else: previous_non_trainable_params[n] = param.clone() trainer.train() self.assertIsNotNone(trainer.state.log_history[(-1)]["train_loss"]) # Check that the parameters have changed for n, param in previous_trainable_params.items(): new_param = trainer.model.get_parameter(n) self.assertFalse(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12)) # Check that the non trainable parameters have not changed for n, param in previous_non_trainable_params.items(): new_param = trainer.model.get_parameter(n) self.assertTrue(torch.allclose(param, new_param, atol=1e-12, rtol=1e-12)) def test_margin(self): with tempfile.TemporaryDirectory() as tmp_dir: dummy_dataset_dict = { "input_ids_chosen": [ torch.LongTensor([0, 1, 2]), ], "attention_mask_chosen": [ torch.LongTensor([1, 1, 1]), ], "input_ids_rejected": [ torch.LongTensor([0, 2]), ], "attention_mask_rejected": [ torch.LongTensor([1, 1]), ], "margin": [ torch.FloatTensor([1.0]), ], } dummy_dataset = Dataset.from_dict(dummy_dataset_dict) training_args = RewardConfig(output_dir=tmp_dir, report_to="none") trainer = RewardTrainer( model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset ) batch = [dummy_dataset[0]] batch = trainer.data_collator(batch) batch = {k: v.to(trainer.model.device) if isinstance(v, torch.Tensor) else v for k, v in batch.items()} loss, outputs = trainer.compute_loss(trainer.model, batch, return_outputs=True) l_val = -torch.nn.functional.logsigmoid( outputs["rewards_chosen"] - outputs["rewards_rejected"] - batch["margin"] ).mean() self.assertLess(abs(loss - l_val), 1e-6) def test_tags(self): with tempfile.TemporaryDirectory() as tmp_dir: dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference", split="train") training_args = RewardConfig(output_dir=tmp_dir, report_to="none") trainer = RewardTrainer( model=self.model, args=training_args, processing_class=self.tokenizer, train_dataset=dummy_dataset ) self.assertEqual(trainer.model.model_tags, trainer._tag_names)