# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ # Full training python trl/scripts/dpo.py \ --dataset_name trl-lib/ultrafeedback_binarized \ --dataset_streaming \ --model_name_or_path Qwen/Qwen2-0.5B-Instruct \ --learning_rate 5.0e-7 \ --num_train_epochs 1 \ --per_device_train_batch_size 2 \ --gradient_accumulation_steps 8 \ --gradient_checkpointing \ --logging_steps 25 \ --eval_strategy steps \ --eval_steps 50 \ --output_dir Qwen2-0.5B-DPO \ --no_remove_unused_columns --report_to wandb # LoRA: python trl/scripts/dpo.py \ --dataset_name trl-lib/ultrafeedback_binarized \ --dataset_streaming \ --model_name_or_path Qwen/Qwen2-0.5B-Instruct \ --learning_rate 5.0e-6 \ --num_train_epochs 1 \ --per_device_train_batch_size 2 \ --gradient_accumulation_steps 8 \ --gradient_checkpointing \ --logging_steps 25 \ --eval_strategy steps \ --eval_steps 50 \ --output_dir Qwen2-0.5B-DPO \ --no_remove_unused_columns \ --use_peft \ --lora_r 32 \ --lora_alpha 16 --report_to wandb """ import argparse import torch from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoTokenizer from trl import ( DPOConfig, DPOTrainer, ModelConfig, ScriptArguments, TrlParser, get_kbit_device_map, get_peft_config, get_quantization_config, ) from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE def main(script_args, training_args, model_args): ################ # Model & Tokenizer ################### torch_dtype = ( model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) ) quantization_config = get_quantization_config(model_args) model_kwargs = dict( revision=model_args.model_revision, attn_implementation=model_args.attn_implementation, torch_dtype=torch_dtype, use_cache=False if training_args.gradient_checkpointing else True, device_map=get_kbit_device_map() if quantization_config is not None else None, quantization_config=quantization_config, ) model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs ) peft_config = get_peft_config(model_args) if peft_config is None: ref_model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs ) else: ref_model = None tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code ) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token if tokenizer.chat_template is None: tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE if script_args.ignore_bias_buffers: # torch distributed hack model._ddp_params_and_buffers_to_ignore = [ name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool ] ################ # Dataset ################ dataset = load_dataset( script_args.dataset_name, name=script_args.dataset_config, streaming=script_args.dataset_streaming, ) ########## # Training ################ trainer = DPOTrainer( model, ref_model, args=training_args, train_dataset=dataset[script_args.dataset_train_split], eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, processing_class=tokenizer, peft_config=peft_config, ) trainer.train() if training_args.eval_strategy != "no": metrics = trainer.evaluate() trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Save and push to hub trainer.save_model(training_args.output_dir) if training_args.push_to_hub: trainer.push_to_hub(dataset_name=script_args.dataset_name) def make_parser(subparsers: argparse._SubParsersAction = None): dataclass_types = (ScriptArguments, DPOConfig, ModelConfig) if subparsers is not None: parser = subparsers.add_parser("dpo", help="Run the DPO training script", dataclass_types=dataclass_types) else: parser = TrlParser(dataclass_types) return parser if __name__ == "__main__": parser = make_parser() script_args, training_args, model_args = parser.parse_args_and_config() main(script_args, training_args, model_args)