# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ # Full training python trl/scripts/sft.py \ --model_name_or_path Qwen/Qwen2-0.5B \ --dataset_name trl-lib/Capybara \ --learning_rate 2.0e-5 \ --num_train_epochs 1 \ --packing \ --per_device_train_batch_size 2 \ --gradient_accumulation_steps 8 \ --gradient_checkpointing \ --eos_token '<|im_end|>' \ --logging_steps 25 \ --eval_strategy steps \ --eval_steps 100 \ --output_dir Qwen2-0.5B-SFT \ --push_to_hub # LoRA python trl/scripts/sft.py \ --model_name_or_path Qwen/Qwen2-0.5B \ --dataset_name trl-lib/Capybara \ --learning_rate 2.0e-4 \ --num_train_epochs 1 \ --packing \ --per_device_train_batch_size 2 \ --gradient_accumulation_steps 8 \ --gradient_checkpointing \ --eos_token '<|im_end|>' \ --logging_steps 25 \ --eval_strategy steps \ --eval_steps 100 \ --use_peft \ --lora_r 32 \ --lora_alpha 16 \ --output_dir Qwen2-0.5B-SFT \ --push_to_hub """ import argparse from datasets import load_dataset from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer from transformers.models.auto.modeling_auto import MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES from trl import ( ModelConfig, ScriptArguments, SFTConfig, SFTTrainer, TrlParser, get_kbit_device_map, get_peft_config, get_quantization_config, setup_chat_format, ) def main(script_args, training_args, model_args): ################ # Model init kwargs & Tokenizer ################ quantization_config = get_quantization_config(model_args) model_kwargs = dict( revision=model_args.model_revision, trust_remote_code=model_args.trust_remote_code, attn_implementation=model_args.attn_implementation, torch_dtype=model_args.torch_dtype, use_cache=False if training_args.gradient_checkpointing else True, device_map=get_kbit_device_map() if quantization_config is not None else None, quantization_config=quantization_config, ) # Create model config = AutoConfig.from_pretrained(model_args.model_name_or_path) valid_image_text_architectures = MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES.values() if config.architectures and any(arch in valid_image_text_architectures for arch in config.architectures): from transformers import AutoModelForImageTextToText model_kwargs.pop("use_cache", None) # Image models do not support cache model = AutoModelForImageTextToText.from_pretrained(model_args.model_name_or_path, **model_kwargs) else: model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, **model_kwargs) # Create tokenizer tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, use_fast=True ) # Set default chat template if needed if tokenizer.chat_template is None: model, tokenizer = setup_chat_format(model, tokenizer, format="chatml") ################ # Dataset ################ dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config) ################ # Training ################ trainer = SFTTrainer( model=model, args=training_args, train_dataset=dataset[script_args.dataset_train_split], eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None, processing_class=tokenizer, peft_config=get_peft_config(model_args), ) trainer.train() # Save and push to hub trainer.save_model(training_args.output_dir) if training_args.push_to_hub: trainer.push_to_hub(dataset_name=script_args.dataset_name) def make_parser(subparsers: argparse._SubParsersAction = None): dataclass_types = (ScriptArguments, SFTConfig, ModelConfig) if subparsers is not None: parser = subparsers.add_parser("sft", help="Run the SFT training script", dataclass_types=dataclass_types) else: parser = TrlParser(dataclass_types) return parser if __name__ == "__main__": parser = make_parser() # When using the trl cli, this script may be run with additional arguments, corresponding accelerate arguments. # To ensure that their parsing does not interfere with the script arguments, parse the arguments with # `return_remaining_strings=True`, then ignore the remaining strings. script_args, training_args, model_args, _ = parser.parse_args_and_config(return_remaining_strings=True) main(script_args, training_args, model_args)