# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import importlib import inspect import logging import os import subprocess import sys from collections.abc import Iterable from dataclasses import dataclass, field from typing import Optional, Union import yaml from transformers import HfArgumentParser from transformers.hf_argparser import DataClass, DataClassType from transformers.utils import is_rich_available logger = logging.getLogger(__name__) @dataclass class ScriptArguments: """ Arguments common to all scripts. Args: dataset_name (`str`): Dataset name. dataset_config (`str` or `None`, *optional*, defaults to `None`): Dataset configuration name. Corresponds to the `name` argument of the [`~datasets.load_dataset`] function. dataset_train_split (`str`, *optional*, defaults to `"train"`): Dataset split to use for training. dataset_test_split (`str`, *optional*, defaults to `"test"`): Dataset split to use for evaluation. dataset_streaming (`bool`, *optional*, defaults to `False`): Whether to stream the dataset. If True, the dataset will be loaded in streaming mode. gradient_checkpointing_use_reentrant (`bool`, *optional*, defaults to `False`): Whether to apply `use_reentrant` for gradient checkpointing. ignore_bias_buffers (`bool`, *optional*, defaults to `False`): Debug argument for distributed training. Fix for DDP issues with LM bias/mask buffers - invalid scalar type, inplace operation. See https://github.com/huggingface/transformers/issues/22482#issuecomment-1595790992. """ dataset_name: Optional[str] = field(default=None, metadata={"help": "Dataset name."}) dataset_config: Optional[str] = field( default=None, metadata={ "help": "Dataset configuration name. Corresponds to the `name` argument of the `datasets.load_dataset` " "function." }, ) dataset_train_split: str = field(default="train", metadata={"help": "Dataset split to use for training."}) dataset_test_split: str = field(default="test", metadata={"help": "Dataset split to use for evaluation."}) dataset_streaming: bool = field( default=False, metadata={"help": "Whether to stream the dataset. If True, the dataset will be loaded in streaming mode."}, ) gradient_checkpointing_use_reentrant: bool = field( default=False, metadata={"help": "Whether to apply `use_reentrant` for gradient checkpointing."}, ) ignore_bias_buffers: bool = field( default=False, metadata={ "help": "Debug argument for distributed training. Fix for DDP issues with LM bias/mask buffers - invalid " "scalar type, inplace operation. See " "https://github.com/huggingface/transformers/issues/22482#issuecomment-1595790992." }, ) def init_zero_verbose(): """ Perform zero verbose init - use this method on top of the CLI modules to make logging and warning output cleaner. Uses Rich if available, falls back otherwise. """ import logging import warnings FORMAT = "%(message)s" if is_rich_available(): from rich.logging import RichHandler handler = RichHandler() else: handler = logging.StreamHandler() logging.basicConfig(format=FORMAT, datefmt="[%X]", handlers=[handler], level=logging.ERROR) # Custom warning handler to redirect warnings to the logging system def warning_handler(message, category, filename, lineno, file=None, line=None): logging.warning(f"{filename}:{lineno}: {category.__name__}: {message}") # Add the custom warning handler - we need to do that before importing anything to make sure the loggers work well warnings.showwarning = warning_handler class TrlParser(HfArgumentParser): """ A subclass of [`transformers.HfArgumentParser`] designed for parsing command-line arguments with dataclass-backed configurations, while also supporting configuration file loading and environment variable management. Args: dataclass_types (`Union[DataClassType, Iterable[DataClassType]]` or `None`, *optional*, defaults to `None`): Dataclass types to use for argument parsing. **kwargs: Additional keyword arguments passed to the [`transformers.HfArgumentParser`] constructor. Examples: ```yaml # config.yaml env: VAR1: value1 arg1: 23 ``` ```python # main.py import os from dataclasses import dataclass from trl import TrlParser @dataclass class MyArguments: arg1: int arg2: str = "alpha" parser = TrlParser(dataclass_types=[MyArguments]) training_args = parser.parse_args_and_config() print(training_args, os.environ.get("VAR1")) ``` ```bash $ python main.py --config config.yaml (MyArguments(arg1=23, arg2='alpha'),) value1 $ python main.py --arg1 5 --arg2 beta (MyArguments(arg1=5, arg2='beta'),) None ``` """ def __init__( self, dataclass_types: Optional[Union[DataClassType, Iterable[DataClassType]]] = None, **kwargs, ): # Make sure dataclass_types is an iterable if dataclass_types is None: dataclass_types = [] elif not isinstance(dataclass_types, Iterable): dataclass_types = [dataclass_types] # Check that none of the dataclasses have the "config" field for dataclass_type in dataclass_types: if "config" in dataclass_type.__dataclass_fields__: raise ValueError( f"Dataclass {dataclass_type.__name__} has a field named 'config'. This field is reserved for the " f"config file path and should not be used in the dataclass." ) super().__init__(dataclass_types=dataclass_types, **kwargs) def parse_args_and_config( self, args: Optional[Iterable[str]] = None, return_remaining_strings: bool = False, fail_with_unknown_args: bool = True, ) -> tuple[DataClass, ...]: """ Parse command-line args and config file into instances of the specified dataclass types. This method wraps [`transformers.HfArgumentParser.parse_args_into_dataclasses`] and also parses the config file specified with the `--config` flag. The config file (in YAML format) provides argument values that replace the default values in the dataclasses. Command line arguments can override values set by the config file. The method also sets any environment variables specified in the `env` field of the config file. """ args = list(args) if args is not None else sys.argv[1:] if "--config" in args: # Get the config file path from config_index = args.index("--config") args.pop(config_index) # remove the --config flag config_path = args.pop(config_index) # get the path to the config file with open(config_path) as yaml_file: config = yaml.safe_load(yaml_file) # Set the environment variables specified in the config file if "env" in config: env_vars = config.pop("env", {}) if not isinstance(env_vars, dict): raise ValueError("`env` field should be a dict in the YAML file.") for key, value in env_vars.items(): os.environ[key] = str(value) # Set the defaults from the config values config_remaining_strings = self.set_defaults_with_config(**config) else: config_remaining_strings = [] # Parse the arguments from the command line output = self.parse_args_into_dataclasses(args=args, return_remaining_strings=return_remaining_strings) # Merge remaining strings from the config file with the remaining strings from the command line if return_remaining_strings: args_remaining_strings = output[-1] return output[:-1] + (config_remaining_strings + args_remaining_strings,) elif fail_with_unknown_args and config_remaining_strings: raise ValueError( f"Unknown arguments from config file: {config_remaining_strings}. Please remove them, add them to the " "dataclass, or set `fail_with_unknown_args=False`." ) else: return output def set_defaults_with_config(self, **kwargs) -> list[str]: """ Overrides the parser's default values with those provided via keyword arguments, including for subparsers. Any argument with an updated default will also be marked as not required if it was previously required. Returns a list of strings that were not consumed by the parser. """ def apply_defaults(parser, kw): used_keys = set() for action in parser._actions: # Handle subparsers recursively if isinstance(action, argparse._SubParsersAction): for subparser in action.choices.values(): used_keys.update(apply_defaults(subparser, kw)) elif action.dest in kw: action.default = kw[action.dest] action.required = False used_keys.add(action.dest) return used_keys used_keys = apply_defaults(self, kwargs) # Remaining args not consumed by the parser remaining = [ item for key, value in kwargs.items() if key not in used_keys for item in (f"--{key}", str(value)) ] return remaining def get_git_commit_hash(package_name): try: # Import the package to locate its path package = importlib.import_module(package_name) # Get the path to the package using inspect package_path = os.path.dirname(inspect.getfile(package)) # Navigate up to the Git repository root if the package is inside a subdirectory git_repo_path = os.path.abspath(os.path.join(package_path, "..")) git_dir = os.path.join(git_repo_path, ".git") if os.path.isdir(git_dir): # Run the git command to get the current commit hash commit_hash = ( subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=git_repo_path).strip().decode("utf-8") ) return commit_hash else: return None except Exception as e: return f"Error: {str(e)}"