# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import warnings from pathlib import Path from typing import Callable, Optional, Union import torch from datasets import Dataset from torch.utils.data import DataLoader from transformers import ( AutoModelForCausalLM, AutoTokenizer, BaseImageProcessor, DataCollator, DataCollatorForLanguageModeling, DataCollatorForSeq2Seq, FeatureExtractionMixin, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, Trainer, TrainingArguments, is_wandb_available, ) from transformers.trainer_utils import EvalLoopOutput from transformers.utils import is_peft_available from ..core import PPODecorators from .iterative_sft_config import IterativeSFTConfig from .utils import generate_model_card, get_comet_experiment_url if is_peft_available(): from peft import PeftModel if is_wandb_available(): import wandb class IterativeSFTTrainer(Trainer): """ The IterativeSFTTrainer can be used to finetune models with methods that requires some steps between optimization. Args: model (`Union[str, PreTrainedModel]`): Model to be trained. Can be either: - A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a path to a *directory* containing model weights saved using [`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keywork arguments in `args.model_init_kwargs`. - A [`~transformers.PreTrainedModel`] object. Only causal language models are supported. args ([`IterativeSFTConfig`], *optional*, defaults to `None`): Configuration for this trainer. If `None`, a default configuration is used. data_collator (`DataCollator`, *optional*): Function to use to form a batch from a list of elements of the processed `train_dataset` or `eval_dataset`. Will default to [`~transformers.default_data_collator`] if no `processing_class` is provided, an instance of [`~transformers.DataCollatorWithPadding`] otherwise if the processing_class is a feature extractor or tokenizer. eval_dataset (`datasets.Dataset`): The dataset to use for evaluation. processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`): Processing class used to process the data. If `None`, the processing class is loaded from the model's name with [`~transformers.AutoTokenizer.from_pretrained`]. optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): The optimizer and scheduler to use for training. preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): The function to use to preprocess the logits before computing the metrics. compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): The function to use to compute the metrics. Must take a `EvalPrediction` and return a dictionary string to metric values. max_length (`int`, *optional*, deprecated): Maximum length of the tokenized sequence. Use `args.max_length` instead. truncation_mode (`str`, *optional*, deprecated): The truncation mode to use. Use `args.truncation_mode` instead. optimize_device_cache (`bool`, *optional*, deprecated): Whether to optimize accelerator cache. Use `args.optimize_device_cache` instead. """ _tag_names = ["trl", "iterative-sft"] def __init__( self, model: Union[str, PreTrainedModel], args: Optional[Union[IterativeSFTConfig, TrainingArguments]] = None, data_collator: Optional[DataCollator] = None, eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, processing_class: Optional[ Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] ] = None, optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = ( None, None, ), preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None, # Deprecated parameters max_length: Optional[int] = None, truncation_mode: Optional[str] = None, optimize_device_cache: Optional[bool] = None, ): # Handle deprecated parameters deprecated_params = {} if max_length is not None: deprecated_params["max_length"] = max_length warnings.warn( "The `max_length` parameter is deprecated and will be removed in version 0.20. " "Pass it through the `args` parameter using `IterativeSFTConfig(max_length=...)` instead.", DeprecationWarning, ) if truncation_mode is not None: deprecated_params["truncation_mode"] = truncation_mode warnings.warn( "The `truncation_mode` parameter is deprecated and will be removed in version 0.20. " "Pass it through the `args` parameter using `IterativeSFTConfig(truncation_mode=...)` instead.", DeprecationWarning, ) if optimize_device_cache is not None: deprecated_params["optimize_device_cache"] = optimize_device_cache warnings.warn( "The `optimize_device_cache` parameter is deprecated and will be removed in version 0.20 " "Pass it through the `args` parameter using `IterativeSFTConfig(optimize_device_cache=...)` instead.", DeprecationWarning, ) # Args model_id = model if isinstance(model, str) else model.config._name_or_path if args is None: model_name = model_id.split("/")[-1] args = IterativeSFTConfig(f"{model_name}-IterativeSFT") elif isinstance(args, TrainingArguments) and not isinstance(args, IterativeSFTConfig): dict_args = args.to_dict() dict_args["hub_token"] = args.hub_token # to_dict hides the hub_token dict_args.pop("push_to_hub_token") args = IterativeSFTConfig(**dict_args) # Update args with deprecated parameters if provided if deprecated_params: for key, value in deprecated_params.items(): setattr(args, key, value) # Handle the tokenizer if processing_class is None: processing_class = AutoTokenizer.from_pretrained(model_id) # Model if args.model_init_kwargs is not None and not isinstance(model, str): warnings.warn( "You passed model_init_kwargs to the `IterativeSFTConfig`, but your model is already instantiated. " "The `model_init_kwargs` will be ignored." ) if isinstance(model, str): model = self._create_model_from_path(model, args) # PEFT configuration and model wrapping if is_peft_available() and isinstance(model, PeftModel): self.is_peft_model = True else: self.is_peft_model = False self.processing_class = processing_class self.is_encoder_decoder = getattr(model.config, "is_encoder_decoder", False) if data_collator is None: if self.is_encoder_decoder: self.data_collator = DataCollatorForSeq2Seq( processing_class, label_pad_token_id=-100, pad_to_multiple_of=8 ) else: self.data_collator = DataCollatorForLanguageModeling(self.processing_class, mlm=False) else: self.data_collator = data_collator self.max_length = args.max_length self.truncation_mode = args.truncation_mode self.optimize_device_cache = args.optimize_device_cache super().__init__( model=model, args=args, data_collator=self.data_collator, eval_dataset=eval_dataset, processing_class=processing_class, compute_metrics=compute_metrics, optimizers=optimizers, preprocess_logits_for_metrics=preprocess_logits_for_metrics, ) # Add tags for models that have been loaded with the correct transformers version if hasattr(self.model, "add_model_tags"): self.model.add_model_tags(self._tag_names) self.create_optimizer_and_scheduler(self.args.max_steps) # prepare model, optimizer and lr_scheduler self.model, self.optimizer, self.lr_scheduler = self.accelerator.prepare( self.model, self.optimizer, self.lr_scheduler ) self.processing_class.truncation_side = "left" if self.truncation_mode == "keep_end" else "right" if not hasattr(self, "accelerator"): raise AttributeError( "Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`." ) PPODecorators.optimize_device_cache = self.optimize_device_cache def _create_model_from_path(self, model_path: str, args: IterativeSFTConfig) -> PreTrainedModel: """Creates a model from a path or model identifier.""" model_init_kwargs = args.model_init_kwargs or {} return AutoModelForCausalLM.from_pretrained(model_path, **model_init_kwargs) def prepare_model_inputs(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, labels: torch.Tensor): if attention_mask is None: attention_mask = [torch.ones_like(ids) for ids in input_ids] if self.is_encoder_decoder: input_data = self.data_collator( [ {"input_ids": ids, "attention_mask": att, "labels": lab} for ids, att, lab in zip(input_ids, attention_mask, labels) ] ).to(self.model.device) input_data.pop("decoder_input_ids", None) # This is directly computed inside the model input_data["labels"][input_data["labels"] == self.processing_class.pad_token_id] = -100 else: input_data = self.data_collator( [{"input_ids": ids, "attention_mask": att} for ids, att in zip(input_ids, attention_mask)] ).to(self.model.device) # truncate in case the user has provided input_ids, attention_mask and labels if self.max_length is not None: if self.truncation_mode == "keep_start": input_data = {k: v[: self.max_length] for k, v in input_data.items()} elif self.truncation_mode == "keep_end": input_data = {k: v[-self.max_length :] for k, v in input_data.items()} else: raise ValueError(f"Unknown truncation mode: {self.truncation_mode}") return input_data @staticmethod def _step_safety_checker( input_ids: list[torch.LongTensor], attention_mask: list[torch.LongTensor], labels: list[torch.LongTensor], texts: list[str], texts_labels: list[str], ): """ Check if the input data is valid for training. Args: input_ids (list[`torch.LongTensor`]): List of tensors containing the input_ids attention_mask (list[`torch.LongTensor`]): List of tensors containing the attention_mask labels (list[`torch.FloatTensor`]): List of tensors containing the labels texts (list[`str`]): List of string containing the text input. texts_labels (list[`str`]): List of string containing the text labels. Returns: `tuple`: The input data. """ if texts is None: if attention_mask is None: for name, tensor_list in zip(["input_ids", "labels"], [input_ids, labels]): if not isinstance(tensor_list, list): raise ValueError(f"{name} must be a list of tensors - got {type(tensor_list)}") if not isinstance(tensor_list[0], torch.Tensor): raise ValueError(f"Elements in {name} must be tensors - got {type(tensor_list[0])}") else: for name, tensor_list in zip( ["input_ids", "attention_mask", "labels"], [input_ids, attention_mask, labels] ): if not isinstance(tensor_list, list): raise ValueError(f"{name} must be a list of tensors - got {type(tensor_list)}") if not isinstance(tensor_list[0], torch.Tensor): raise ValueError(f"Elements in {name} must be tensors - got {type(tensor_list[0])}") else: if not isinstance(texts, list): raise ValueError(f"'text' must be a list of strings - got {type(texts)}") if not isinstance(texts[0], str): raise ValueError(f"Elements in 'text' must be strings - got {type(texts[0])}") if texts_labels is not None: if not isinstance(texts_labels, list): raise ValueError(f"'text_labels' must be a list of strings - got {type(texts_labels)}") if not isinstance(texts_labels[0], str): raise ValueError(f"Elements in 'text_labels' must be strings - got {type(texts_labels[0])}") return input_ids, attention_mask, labels, texts, texts_labels @PPODecorators.empty_device_cache() def step( self, input_ids: Optional[list[torch.LongTensor]] = None, attention_mask: Optional[list[torch.LongTensor]] = None, labels: Optional[list[torch.LongTensor]] = None, texts: Optional[list[str]] = None, texts_labels: Optional[list[str]] = None, ): """ Run an optimisation step given a list of input_ids, attention_mask, and labels or a list of text and text_labels. Args: input_ids (list[`torch.LongTensor`]): List of tensors containing the input_ids (if not provided, text will be used) attention_mask (list[`torch.LongTensor`], , *optional*): List of tensors containing the attention_mask labels (list[`torch.FloatTensor`], *optional*): List of tensors containing the labels (if set to None, will default to input_ids) texts (list[`str`], *optional*): List of strings containing the text input (if not provided, input_ids will directly be used) texts_labels (list[`str`], *optional*): List of strings containing the text labels (if set to None, will default to text) Returns: `dict[str, Any]`: A summary of the training statistics """ self.model.train() if self.state.global_step == 0: self.tr_loss = torch.tensor(0.0).to(self.args.device) self._globalstep_last_logged = self.state.global_step if input_ids is None and texts is None: raise ValueError("Step should include `input_ids` or `texts` as keyword arguments.") elif input_ids is not None and texts is not None: warnings.warn( "Both `input_ids` and `texts` argument are provided. `input_ids` will be ignored. " "Please provide only one of the two.", UserWarning, ) if labels is None and texts_labels is None and self.is_encoder_decoder: raise ValueError( "No 'labels' or 'text_labels' are provided. When using an encoder-decoder architecture, 'labels' or 'text_labels' must be passed." ) input_ids, attention_mask, labels, texts, texts_labels = self._step_safety_checker( input_ids, attention_mask, labels, texts, texts_labels ) if texts is not None: model_inputs = self.processing_class( texts, max_length=self.max_length, truncation=True, padding=True, return_tensors="pt" ) input_ids, attention_mask = model_inputs["input_ids"], model_inputs["attention_mask"] if texts_labels is not None: labels = self.processing_class( texts, max_length=self.max_length, truncation=True, padding=True, return_tensors="pt" )["input_ids"] if labels is None: labels = input_ids model_inputs = self.prepare_model_inputs(input_ids, attention_mask, labels) model_inputs_names = list(model_inputs.keys()) batch_dict = {} batch_dict.update(model_inputs) def collator(data): return_dict = dict() for key in data[0]: if key in ["input_ids", "attention_mask", "labels"]: return_dict[key] = torch.stack([d[key] for d in data]).to(self.model.device) return return_dict batch_data = Dataset.from_dict(batch_dict) batch_data.set_format("torch") step_dataloader = DataLoader( batch_data, batch_size=self.args.per_device_train_batch_size, shuffle=True, collate_fn=collator, ) for _, batch in enumerate(step_dataloader): with self.accelerator.accumulate(self.model): model_inputs = {k: batch[k] for k in model_inputs_names} loss = self.compute_loss(self.model, model_inputs) if self.args.n_gpu > 1: loss = loss.mean() tr_loss_step = loss.detach() self.accelerator.backward(loss) if self.accelerator.sync_gradients and self.args.max_grad_norm is not None: self.accelerator.clip_grad_norm_( self.model.parameters(), self.args.max_grad_norm, ) self.optimizer.step() self.optimizer.zero_grad() if self.lr_scheduler is not None: self.lr_scheduler.step() self.state.global_step += 1 # update stats etc self.tr_loss += tr_loss_step self._maybe_log_save_evaluate() def _maybe_log_save_evaluate(self): # check if eval is required if self.args.eval_steps is not None: if self.state.global_step % self.args.eval_steps == 0 and self.state.global_step != 0: self.evaluate(self.eval_dataset) # check if logging is required if self.args.logging_steps is not None: if self.state.global_step % self.args.logging_steps == 0 and self.state.global_step != 0: logs: dict[str, float] = {} tr_loss_scalar = self._nested_gather(self.tr_loss).mean().item() # reset tr_loss to zero self.tr_loss -= self.tr_loss logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4) logs["learning_rate"] = self._get_learning_rate() self._globalstep_last_logged = self.state.global_step self.log(logs) # Ensure the model card is saved along with the checkpoint def _save_checkpoint(self, model, trial): if self.args.hub_model_id is None: model_name = Path(self.args.output_dir).name else: model_name = self.args.hub_model_id.split("/")[-1] self.create_model_card(model_name=model_name) super()._save_checkpoint(model, trial) def create_model_card( self, model_name: Optional[str] = None, dataset_name: Optional[str] = None, tags: Union[str, list[str], None] = None, ): """ Creates a draft of a model card using the information available to the `Trainer`. Args: model_name (`str` or `None`, *optional*, defaults to `None`): Name of the model. dataset_name (`str` or `None`, *optional*, defaults to `None`): Name of the dataset used for training. tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): Tags to be associated with the model card. """ if not self.is_world_process_zero(): return if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): base_model = self.model.config._name_or_path else: base_model = None tags = tags or set() if isinstance(tags, str): tags = {tags} if hasattr(self.model.config, "unsloth_version"): tags.add("unsloth") tags.update(self._tag_names) model_card = generate_model_card( base_model=base_model, model_name=model_name, hub_model_id=self.hub_model_id, dataset_name=dataset_name, tags=tags, wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, comet_url=get_comet_experiment_url(), trainer_name="Iterative SFT", ) model_card.save(os.path.join(self.args.output_dir, "README.md"))