Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,6 @@ PLACEHOLDER = """
|
|
17 |
</center>
|
18 |
"""
|
19 |
|
20 |
-
|
21 |
CSS = """
|
22 |
.duplicate-button {
|
23 |
margin: auto !important;
|
@@ -30,7 +29,7 @@ h3 {
|
|
30 |
}
|
31 |
"""
|
32 |
|
33 |
-
device = "cuda"
|
34 |
|
35 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
36 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -39,53 +38,56 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
39 |
device_map="auto",
|
40 |
ignore_mismatched_sizes=True)
|
41 |
|
|
|
42 |
@spaces.GPU()
|
43 |
def stream_chat(
|
44 |
-
message: str,
|
45 |
-
history: list,
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
50 |
penalty: float = 1.2,
|
51 |
):
|
52 |
print(f'message: {message}')
|
53 |
print(f'history: {history}')
|
|
|
54 |
|
55 |
-
conversation = []
|
56 |
for prompt, answer in history:
|
57 |
conversation.extend([
|
58 |
-
{"role": "user", "content": prompt},
|
59 |
{"role": "assistant", "content": answer},
|
60 |
])
|
61 |
|
62 |
conversation.append({"role": "user", "content": message})
|
63 |
|
64 |
-
input_text=tokenizer.apply_chat_template(conversation, tokenize=False)
|
65 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
66 |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
67 |
-
|
68 |
generate_kwargs = dict(
|
69 |
-
input_ids=inputs,
|
70 |
-
max_new_tokens
|
71 |
-
do_sample
|
72 |
-
top_p
|
73 |
-
top_k
|
74 |
-
temperature
|
75 |
streamer=streamer,
|
76 |
-
pad_token_id
|
77 |
)
|
78 |
|
79 |
with torch.no_grad():
|
80 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
81 |
thread.start()
|
82 |
-
|
83 |
buffer = ""
|
84 |
for new_text in streamer:
|
85 |
buffer += new_text
|
86 |
yield buffer
|
87 |
|
88 |
-
|
89 |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
90 |
|
91 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
@@ -97,6 +99,12 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
97 |
fill_height=True,
|
98 |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
99 |
additional_inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
gr.Slider(
|
101 |
minimum=0,
|
102 |
maximum=1,
|
@@ -149,4 +157,4 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
149 |
|
150 |
|
151 |
if __name__ == "__main__":
|
152 |
-
demo.launch()
|
|
|
17 |
</center>
|
18 |
"""
|
19 |
|
|
|
20 |
CSS = """
|
21 |
.duplicate-button {
|
22 |
margin: auto !important;
|
|
|
29 |
}
|
30 |
"""
|
31 |
|
32 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
33 |
|
34 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
35 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
38 |
device_map="auto",
|
39 |
ignore_mismatched_sizes=True)
|
40 |
|
41 |
+
|
42 |
@spaces.GPU()
|
43 |
def stream_chat(
|
44 |
+
message: str,
|
45 |
+
history: list,
|
46 |
+
system_prompt: str,
|
47 |
+
temperature: float = 0.3,
|
48 |
+
max_new_tokens: int = 1024,
|
49 |
+
top_p: float = 1.0,
|
50 |
+
top_k: int = 20,
|
51 |
penalty: float = 1.2,
|
52 |
):
|
53 |
print(f'message: {message}')
|
54 |
print(f'history: {history}')
|
55 |
+
print(f'system_prompt: {system_prompt}')
|
56 |
|
57 |
+
conversation = [{"role": "system", "content": system_prompt}]
|
58 |
for prompt, answer in history:
|
59 |
conversation.extend([
|
60 |
+
{"role": "user", "content": prompt},
|
61 |
{"role": "assistant", "content": answer},
|
62 |
])
|
63 |
|
64 |
conversation.append({"role": "user", "content": message})
|
65 |
|
66 |
+
input_text = tokenizer.apply_chat_template(conversation, tokenize=False)
|
67 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
68 |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
69 |
+
|
70 |
generate_kwargs = dict(
|
71 |
+
input_ids=inputs,
|
72 |
+
max_new_tokens=max_new_tokens,
|
73 |
+
do_sample=False if temperature == 0 else True,
|
74 |
+
top_p=top_p,
|
75 |
+
top_k=top_k,
|
76 |
+
temperature=temperature,
|
77 |
streamer=streamer,
|
78 |
+
pad_token_id=10,
|
79 |
)
|
80 |
|
81 |
with torch.no_grad():
|
82 |
thread = Thread(target=model.generate, kwargs=generate_kwargs)
|
83 |
thread.start()
|
84 |
+
|
85 |
buffer = ""
|
86 |
for new_text in streamer:
|
87 |
buffer += new_text
|
88 |
yield buffer
|
89 |
|
90 |
+
|
91 |
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
|
92 |
|
93 |
with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
|
99 |
fill_height=True,
|
100 |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
101 |
additional_inputs=[
|
102 |
+
gr.Textbox(
|
103 |
+
lines=2,
|
104 |
+
placeholder="Enter system prompt here...",
|
105 |
+
label="System Prompt",
|
106 |
+
render=True,
|
107 |
+
),
|
108 |
gr.Slider(
|
109 |
minimum=0,
|
110 |
maximum=1,
|
|
|
157 |
|
158 |
|
159 |
if __name__ == "__main__":
|
160 |
+
demo.launch()
|