ivpich commited on
Commit
23dcf34
·
verified ·
1 Parent(s): 5426f12

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -22
app.py CHANGED
@@ -17,7 +17,6 @@ PLACEHOLDER = """
17
  </center>
18
  """
19
 
20
-
21
  CSS = """
22
  .duplicate-button {
23
  margin: auto !important;
@@ -30,7 +29,7 @@ h3 {
30
  }
31
  """
32
 
33
- device = "cuda" # for GPU usage or "cpu" for CPU usage
34
 
35
  tokenizer = AutoTokenizer.from_pretrained(MODEL)
36
  model = AutoModelForCausalLM.from_pretrained(
@@ -39,53 +38,56 @@ model = AutoModelForCausalLM.from_pretrained(
39
  device_map="auto",
40
  ignore_mismatched_sizes=True)
41
 
 
42
  @spaces.GPU()
43
  def stream_chat(
44
- message: str,
45
- history: list,
46
- temperature: float = 0.3,
47
- max_new_tokens: int = 1024,
48
- top_p: float = 1.0,
49
- top_k: int = 20,
 
50
  penalty: float = 1.2,
51
  ):
52
  print(f'message: {message}')
53
  print(f'history: {history}')
 
54
 
55
- conversation = []
56
  for prompt, answer in history:
57
  conversation.extend([
58
- {"role": "user", "content": prompt},
59
  {"role": "assistant", "content": answer},
60
  ])
61
 
62
  conversation.append({"role": "user", "content": message})
63
 
64
- input_text=tokenizer.apply_chat_template(conversation, tokenize=False)
65
  inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
66
  streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
67
-
68
  generate_kwargs = dict(
69
- input_ids=inputs,
70
- max_new_tokens = max_new_tokens,
71
- do_sample = False if temperature == 0 else True,
72
- top_p = top_p,
73
- top_k = top_k,
74
- temperature = temperature,
75
  streamer=streamer,
76
- pad_token_id = 10,
77
  )
78
 
79
  with torch.no_grad():
80
  thread = Thread(target=model.generate, kwargs=generate_kwargs)
81
  thread.start()
82
-
83
  buffer = ""
84
  for new_text in streamer:
85
  buffer += new_text
86
  yield buffer
87
 
88
-
89
  chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
90
 
91
  with gr.Blocks(css=CSS, theme="soft") as demo:
@@ -97,6 +99,12 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
97
  fill_height=True,
98
  additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
99
  additional_inputs=[
 
 
 
 
 
 
100
  gr.Slider(
101
  minimum=0,
102
  maximum=1,
@@ -149,4 +157,4 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
149
 
150
 
151
  if __name__ == "__main__":
152
- demo.launch()
 
17
  </center>
18
  """
19
 
 
20
  CSS = """
21
  .duplicate-button {
22
  margin: auto !important;
 
29
  }
30
  """
31
 
32
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
33
 
34
  tokenizer = AutoTokenizer.from_pretrained(MODEL)
35
  model = AutoModelForCausalLM.from_pretrained(
 
38
  device_map="auto",
39
  ignore_mismatched_sizes=True)
40
 
41
+
42
  @spaces.GPU()
43
  def stream_chat(
44
+ message: str,
45
+ history: list,
46
+ system_prompt: str,
47
+ temperature: float = 0.3,
48
+ max_new_tokens: int = 1024,
49
+ top_p: float = 1.0,
50
+ top_k: int = 20,
51
  penalty: float = 1.2,
52
  ):
53
  print(f'message: {message}')
54
  print(f'history: {history}')
55
+ print(f'system_prompt: {system_prompt}')
56
 
57
+ conversation = [{"role": "system", "content": system_prompt}]
58
  for prompt, answer in history:
59
  conversation.extend([
60
+ {"role": "user", "content": prompt},
61
  {"role": "assistant", "content": answer},
62
  ])
63
 
64
  conversation.append({"role": "user", "content": message})
65
 
66
+ input_text = tokenizer.apply_chat_template(conversation, tokenize=False)
67
  inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
68
  streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
69
+
70
  generate_kwargs = dict(
71
+ input_ids=inputs,
72
+ max_new_tokens=max_new_tokens,
73
+ do_sample=False if temperature == 0 else True,
74
+ top_p=top_p,
75
+ top_k=top_k,
76
+ temperature=temperature,
77
  streamer=streamer,
78
+ pad_token_id=10,
79
  )
80
 
81
  with torch.no_grad():
82
  thread = Thread(target=model.generate, kwargs=generate_kwargs)
83
  thread.start()
84
+
85
  buffer = ""
86
  for new_text in streamer:
87
  buffer += new_text
88
  yield buffer
89
 
90
+
91
  chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
92
 
93
  with gr.Blocks(css=CSS, theme="soft") as demo:
 
99
  fill_height=True,
100
  additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
101
  additional_inputs=[
102
+ gr.Textbox(
103
+ lines=2,
104
+ placeholder="Enter system prompt here...",
105
+ label="System Prompt",
106
+ render=True,
107
+ ),
108
  gr.Slider(
109
  minimum=0,
110
  maximum=1,
 
157
 
158
 
159
  if __name__ == "__main__":
160
+ demo.launch()