Spaces:
Running
Running
File size: 21,351 Bytes
aa98b19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# MCP + LangGraph νΈμ¦μ¨ νν 리μΌ\n",
"\n",
"- μμ±μ: [ν
λλ
ΈνΈ](https://youtube.com/c/teddynote)\n",
"- κ°μ: [ν¨μ€νΈμΊ νΌμ€ RAG λΉλ²λ
ΈνΈ](https://fastcampus.co.kr/data_online_teddy)\n",
"\n",
"**μ°Έκ³ μλ£**\n",
"- https://modelcontextprotocol.io/introduction\n",
"- https://github.com/langchain-ai/langchain-mcp-adapters"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## νκ²½μ€μ \n",
"\n",
"μλ μ€μΉ λ°©λ²μ μ°Έκ³ νμ¬ `uv` λ₯Ό μ€μΉν©λλ€.\n",
"\n",
"**uv μ€μΉ λ°©λ²**\n",
"\n",
"```bash\n",
"# macOS/Linux\n",
"curl -LsSf https://astral.sh/uv/install.sh | sh\n",
"\n",
"# Windows (PowerShell)\n",
"irm https://astral.sh/uv/install.ps1 | iex\n",
"```\n",
"\n",
"**μμ‘΄μ± μ€μΉ**\n",
"\n",
"```bash\n",
"uv pip install -r requirements.txt\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"νκ²½λ³μλ₯Ό κ°μ Έμ΅λλ€."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from dotenv import load_dotenv\n",
"\n",
"load_dotenv(override=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## MultiServerMCPClient"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"μ¬μ μ `mcp_server_remote.py` λ₯Ό μ€νν΄λ‘λλ€. ν°λ―Έλμ μ΄κ³ κ°μνκ²½μ΄ νμ±ν λμ΄ μλ μνμμ μλ²λ₯Ό μ€νν΄ μ£ΌμΈμ.\n",
"\n",
"> λͺ
λ Ήμ΄\n",
"```bash\n",
"source .venv/bin/activate\n",
"python mcp_server_remote.py\n",
"```\n",
"\n",
"`async with` λ‘ μΌμμ μΈ Session μ°κ²°μ μμ± ν ν΄μ "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_mcp_adapters.client import MultiServerMCPClient\n",
"from langgraph.prebuilt import create_react_agent\n",
"from utils import ainvoke_graph, astream_graph\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"model = ChatAnthropic(\n",
" model_name=\"claude-3-7-sonnet-latest\", temperature=0, max_tokens=20000\n",
")\n",
"\n",
"async with MultiServerMCPClient(\n",
" {\n",
" \"weather\": {\n",
" # μλ²μ ν¬νΈμ μΌμΉν΄μΌ ν©λλ€.(8005λ² ν¬νΈ)\n",
" \"url\": \"http://localhost:8005/sse\",\n",
" \"transport\": \"sse\",\n",
" }\n",
" }\n",
") as client:\n",
" print(client.get_tools())\n",
" agent = create_react_agent(model, client.get_tools())\n",
" answer = await astream_graph(agent, {\"messages\": \"μμΈμ λ μ¨λ μ΄λ λ?\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"λ€μμ κ²½μ°μλ session μ΄ λ«νκΈ° λλ¬Έμ λꡬμ μ κ·Όν μ μλ κ²μ νμΈν μ μμ΅λλ€."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await astream_graph(agent, {\"messages\": \"μμΈμ λ μ¨λ μ΄λ λ?\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"μ΄μ κ·ΈλΌ Async Session μ μ μ§νλ©° λꡬμ μ κ·Όνλ λ°©μμΌλ‘ λ³κ²½ν΄ λ³΄κ² μ΅λλ€."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# 1. ν΄λΌμ΄μΈνΈ μμ±\n",
"client = MultiServerMCPClient(\n",
" {\n",
" \"weather\": {\n",
" \"url\": \"http://localhost:8005/sse\",\n",
" \"transport\": \"sse\",\n",
" }\n",
" }\n",
")\n",
"\n",
"\n",
"# 2. λͺ
μμ μΌλ‘ μ°κ²° μ΄κΈ°ν (μ΄ λΆλΆμ΄ νμν¨)\n",
"# μ΄κΈ°ν\n",
"await client.__aenter__()\n",
"\n",
"# μ΄μ λκ΅¬κ° λ‘λλ¨\n",
"print(client.get_tools()) # λκ΅¬κ° νμλ¨"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"langgraph μ μμ΄μ νΈλ₯Ό μμ±ν©λλ€."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"# μμ΄μ νΈ μμ±\n",
"agent = create_react_agent(model, client.get_tools())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"κ·Έλνλ₯Ό μ€ννμ¬ κ²°κ³Όλ₯Ό νμΈν©λλ€."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await astream_graph(agent, {\"messages\": \"μμΈμ λ μ¨λ μ΄λ λ?\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Stdio ν΅μ λ°©μ\n",
"\n",
"Stdio ν΅μ λ°©μμ λ‘컬 νκ²½μμ μ¬μ©νκΈ° μν΄ μ¬μ©ν©λλ€.\n",
"\n",
"- ν΅μ μ μν΄ νμ€ μ
λ ₯/μΆλ ₯ μ¬μ©\n",
"\n",
"μ°Έκ³ : μλμ python κ²½λ‘λ μμ νμΈμ!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from mcp import ClientSession, StdioServerParameters\n",
"from mcp.client.stdio import stdio_client\n",
"from langgraph.prebuilt import create_react_agent\n",
"from langchain_mcp_adapters.tools import load_mcp_tools\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"# Anthropicμ Claude λͺ¨λΈ μ΄κΈ°ν\n",
"model = ChatAnthropic(\n",
" model_name=\"claude-3-7-sonnet-latest\", temperature=0, max_tokens=20000\n",
")\n",
"\n",
"# StdIO μλ² νλΌλ―Έν° μ€μ \n",
"# - command: Python μΈν°νλ¦¬ν° κ²½λ‘\n",
"# - args: μ€νν MCP μλ² μ€ν¬λ¦½νΈ\n",
"server_params = StdioServerParameters(\n",
" command=\"./.venv/bin/python\",\n",
" args=[\"mcp_server_local.py\"],\n",
")\n",
"\n",
"# StdIO ν΄λΌμ΄μΈνΈλ₯Ό μ¬μ©νμ¬ μλ²μ ν΅μ \n",
"async with stdio_client(server_params) as (read, write):\n",
" # ν΄λΌμ΄μΈνΈ μΈμ
μμ±\n",
" async with ClientSession(read, write) as session:\n",
" # μ°κ²° μ΄κΈ°ν\n",
" await session.initialize()\n",
"\n",
" # MCP λꡬ λ‘λ\n",
" tools = await load_mcp_tools(session)\n",
" print(tools)\n",
"\n",
" # μμ΄μ νΈ μμ±\n",
" agent = create_react_agent(model, tools)\n",
"\n",
" # μμ΄μ νΈ μλ΅ μ€νΈλ¦¬λ°\n",
" await astream_graph(agent, {\"messages\": \"μμΈμ λ μ¨λ μ΄λ λ?\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## RAG λ₯Ό ꡬμΆν MCP μλ² μ¬μ©\n",
"\n",
"- νμΌ: `mcp_server_rag.py`\n",
"\n",
"μ¬μ μ langchain μΌλ‘ ꡬμΆν `mcp_server_rag.py` νμΌμ μ¬μ©ν©λλ€.\n",
"\n",
"stdio ν΅μ λ°©μμΌλ‘ λꡬμ λν μ 보λ₯Ό κ°μ Έμ΅λλ€. μ¬κΈ°μ λꡬλ `retriever` λꡬλ₯Ό κ°μ Έμ€κ² λλ©°, μ΄ λꡬλ `mcp_server_rag.py` μμ μ μλ λꡬμ
λλ€. μ΄ νμΌμ μ¬μ μ μλ²μμ μ€νλμ§ **μμλ** λ©λλ€."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from mcp import ClientSession, StdioServerParameters\n",
"from mcp.client.stdio import stdio_client\n",
"from langchain_mcp_adapters.tools import load_mcp_tools\n",
"from langgraph.prebuilt import create_react_agent\n",
"from langchain_anthropic import ChatAnthropic\n",
"from utils import astream_graph\n",
"\n",
"# Anthropicμ Claude λͺ¨λΈ μ΄κΈ°ν\n",
"model = ChatAnthropic(\n",
" model_name=\"claude-3-7-sonnet-latest\", temperature=0, max_tokens=20000\n",
")\n",
"\n",
"# RAG μλ²λ₯Ό μν StdIO μλ² νλΌλ―Έν° μ€μ \n",
"server_params = StdioServerParameters(\n",
" command=\"./.venv/bin/python\",\n",
" args=[\"./mcp_server_rag.py\"],\n",
")\n",
"\n",
"# StdIO ν΄λΌμ΄μΈνΈλ₯Ό μ¬μ©νμ¬ RAG μλ²μ ν΅μ \n",
"async with stdio_client(server_params) as (read, write):\n",
" # ν΄λΌμ΄μΈνΈ μΈμ
μμ±\n",
" async with ClientSession(read, write) as session:\n",
" # μ°κ²° μ΄κΈ°ν\n",
" await session.initialize()\n",
"\n",
" # MCP λꡬ λ‘λ (μ¬κΈ°μλ retriever λꡬ)\n",
" tools = await load_mcp_tools(session)\n",
"\n",
" # μμ΄μ νΈ μμ± λ° μ€ν\n",
" agent = create_react_agent(model, tools)\n",
"\n",
" # μμ΄μ νΈ μλ΅ μ€νΈλ¦¬λ°\n",
" await astream_graph(\n",
" agent, {\"messages\": \"μΌμ±μ μκ° κ°λ°ν μμ±ν AIμ μ΄λ¦μ κ²μν΄μ€\"}\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## SSE λ°©μκ³Ό StdIO λ°©μ νΌν© μ¬μ©\n",
"\n",
"- νμΌ: `mcp_server_rag.py` λ StdIO λ°©μμΌλ‘ ν΅μ \n",
"- `langchain-dev-docs` λ SSE λ°©μμΌλ‘ ν΅μ \n",
"\n",
"SSE λ°©μκ³Ό StdIO λ°©μμ νΌν©νμ¬ μ¬μ©ν©λλ€."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_mcp_adapters.client import MultiServerMCPClient\n",
"from langgraph.prebuilt import create_react_agent\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"# Anthropicμ Claude λͺ¨λΈ μ΄κΈ°ν\n",
"model = ChatAnthropic(\n",
" model_name=\"claude-3-7-sonnet-latest\", temperature=0, max_tokens=20000\n",
")\n",
"\n",
"# 1. λ€μ€ μλ² MCP ν΄λΌμ΄μΈνΈ μμ±\n",
"client = MultiServerMCPClient(\n",
" {\n",
" \"document-retriever\": {\n",
" \"command\": \"./.venv/bin/python\",\n",
" # mcp_server_rag.py νμΌμ μ λ κ²½λ‘λ‘ μ
λ°μ΄νΈν΄μΌ ν©λλ€\n",
" \"args\": [\"./mcp_server_rag.py\"],\n",
" # stdio λ°©μμΌλ‘ ν΅μ (νμ€ μ
μΆλ ₯ μ¬μ©)\n",
" \"transport\": \"stdio\",\n",
" },\n",
" \"langchain-dev-docs\": {\n",
" # SSE μλ²κ° μ€ν μ€μΈμ§ νμΈνμΈμ\n",
" \"url\": \"https://teddynote.io/mcp/langchain/sse\",\n",
" # SSE(Server-Sent Events) λ°©μμΌλ‘ ν΅μ \n",
" \"transport\": \"sse\",\n",
" },\n",
" }\n",
")\n",
"\n",
"\n",
"# 2. λΉλκΈ° 컨ν
μ€νΈ λ§€λμ λ₯Ό ν΅ν λͺ
μμ μ°κ²° μ΄κΈ°ν\n",
"await client.__aenter__()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"langgraph μ `create_react_agent` λ₯Ό μ¬μ©νμ¬ μμ΄μ νΈλ₯Ό μμ±ν©λλ€."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langchain_core.runnables import RunnableConfig\n",
"\n",
"prompt = (\n",
" \"You are a smart agent. \"\n",
" \"Use `retriever` tool to search on AI related documents and answer questions.\"\n",
" \"Use `langchain-dev-docs` tool to search on langchain / langgraph related documents and answer questions.\"\n",
" \"Answer in Korean.\"\n",
")\n",
"agent = create_react_agent(\n",
" model, client.get_tools(), prompt=prompt, checkpointer=MemorySaver()\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"ꡬμΆν΄ λμ `mcp_server_rag.py` μμ μ μν `retriever` λꡬλ₯Ό μ¬μ©νμ¬ κ²μμ μνν©λλ€."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config = RunnableConfig(recursion_limit=30, thread_id=1)\n",
"await astream_graph(\n",
" agent,\n",
" {\n",
" \"messages\": \"`retriever` λꡬλ₯Ό μ¬μ©ν΄μ μΌμ±μ μκ° κ°λ°ν μμ±ν AI μ΄λ¦μ κ²μν΄μ€\"\n",
" },\n",
" config=config,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"μ΄λ²μλ `langchain-dev-docs` λꡬλ₯Ό μ¬μ©νμ¬ κ²μμ μνν©λλ€."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"config = RunnableConfig(recursion_limit=30, thread_id=1)\n",
"await astream_graph(\n",
" agent,\n",
" {\"messages\": \"langgraph-dev-docs μ°Έκ³ ν΄μ self-rag μ μ μμ λν΄μ μλ €μ€\"},\n",
" config=config,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`MemorySaver` λ₯Ό μ¬μ©νμ¬ λ¨κΈ° κΈ°μ΅μ μ μ§ν©λλ€. λ°λΌμ, multi-turn λνλ κ°λ₯ν©λλ€."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await astream_graph(\n",
" agent, {\"messages\": \"μ΄μ μ λ΄μ©μ bullet point λ‘ μμ½ν΄μ€\"}, config=config\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## LangChain μ ν΅ν©λ λꡬ + MCP λꡬ\n",
"\n",
"μ¬κΈ°μλ LangChain μ ν΅ν©λ λꡬλ₯Ό κΈ°μ‘΄μ MCP λ‘λ§ μ΄λ£¨μ΄μ§ λꡬμ ν¨κ» μ¬μ©μ΄ κ°λ₯νμ§ ν
μ€νΈ ν©λλ€."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.tools.tavily_search import TavilySearchResults\n",
"\n",
"# Tavily κ²μ λꡬλ₯Ό μ΄κΈ°ν ν©λλ€. (news νμ
, μ΅κ·Ό 3μΌ λ΄ λ΄μ€)\n",
"tavily = TavilySearchResults(max_results=3, topic=\"news\", days=3)\n",
"\n",
"# κΈ°μ‘΄μ MCP λꡬμ ν¨κ» μ¬μ©ν©λλ€.\n",
"tools = client.get_tools() + [tavily]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"langgraph μ `create_react_agent` λ₯Ό μ¬μ©νμ¬ μμ΄μ νΈλ₯Ό μμ±ν©λλ€."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langchain_core.runnables import RunnableConfig\n",
"\n",
"# μ¬κ· μ ν λ° μ€λ λ μμ΄λ μ€μ \n",
"config = RunnableConfig(recursion_limit=30, thread_id=2)\n",
"\n",
"# ν둬ννΈ μ€μ \n",
"prompt = \"You are a smart agent with various tools. Answer questions in Korean.\"\n",
"\n",
"# μμ΄μ νΈ μμ±\n",
"agent = create_react_agent(model, tools, prompt=prompt, checkpointer=MemorySaver())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"μλ‘κ² μΆκ°ν `tavily` λꡬλ₯Ό μ¬μ©νμ¬ κ²μμ μνν©λλ€."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await astream_graph(agent, {\"messages\": \"μ€λ λ΄μ€ μ°Ύμμ€\"}, config=config)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`retriever` λκ΅¬κ° μννκ² μλνλ κ²μ νμΈν μ μμ΅λλ€."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await astream_graph(\n",
" agent,\n",
" {\n",
" \"messages\": \"`retriever` λꡬλ₯Ό μ¬μ©ν΄μ μΌμ±μ μκ° κ°λ°ν μμ±ν AI μ΄λ¦μ κ²μν΄μ€\"\n",
" },\n",
" config=config,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Smithery μμ μ 곡νλ MCP μλ²\n",
"\n",
"- λ§ν¬: https://smithery.ai/"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"μ¬μ©ν λꡬ λͺ©λ‘μ μλμ κ°μ΅λλ€.\n",
"\n",
"- Sequential Thinking: https://smithery.ai/server/@smithery-ai/server-sequential-thinking\n",
" - ꡬ쑰νλ μ¬κ³ νλ‘μΈμ€λ₯Ό ν΅ν΄ μλμ μ΄κ³ μ±μ°°μ μΈ λ¬Έμ ν΄κ²°μ μν λꡬλ₯Ό μ 곡νλ MCP μλ²\n",
"- Desktop Commander: https://smithery.ai/server/@wonderwhy-er/desktop-commander\n",
" - λ€μν νΈμ§ κΈ°λ₯μΌλ‘ ν°λ―Έλ λͺ
λ Ήμ μ€ννκ³ νμΌμ κ΄λ¦¬νμΈμ. μ½λ©, μ
Έ λ° ν°λ―Έλ, μμ
μλν\n",
"\n",
"**μ°Έκ³ **\n",
"\n",
"- smithery μμ μ 곡νλ λꡬλ₯Ό JSON νμμΌλ‘ κ°μ Έμ¬λ, μλμ μμμ²λΌ `\"transport\": \"stdio\"` λ‘ κΌ μ€μ ν΄μΌ ν©λλ€."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_mcp_adapters.client import MultiServerMCPClient\n",
"from langgraph.prebuilt import create_react_agent\n",
"from langchain_anthropic import ChatAnthropic\n",
"\n",
"# LLM λͺ¨λΈ μ΄κΈ°ν\n",
"model = ChatAnthropic(model=\"claude-3-7-sonnet-latest\", temperature=0, max_tokens=20000)\n",
"\n",
"# 1. ν΄λΌμ΄μΈνΈ μμ±\n",
"client = MultiServerMCPClient(\n",
" {\n",
" \"server-sequential-thinking\": {\n",
" \"command\": \"npx\",\n",
" \"args\": [\n",
" \"-y\",\n",
" \"@smithery/cli@latest\",\n",
" \"run\",\n",
" \"@smithery-ai/server-sequential-thinking\",\n",
" \"--key\",\n",
" \"89a4780a-53b7-4b7b-92e9-a29815f2669b\",\n",
" ],\n",
" \"transport\": \"stdio\", # stdio λ°©μμΌλ‘ ν΅μ μ μΆκ°ν©λλ€.\n",
" },\n",
" \"desktop-commander\": {\n",
" \"command\": \"npx\",\n",
" \"args\": [\n",
" \"-y\",\n",
" \"@smithery/cli@latest\",\n",
" \"run\",\n",
" \"@wonderwhy-er/desktop-commander\",\n",
" \"--key\",\n",
" \"89a4780a-53b7-4b7b-92e9-a29815f2669b\",\n",
" ],\n",
" \"transport\": \"stdio\", # stdio λ°©μμΌλ‘ ν΅μ μ μΆκ°ν©λλ€.\n",
" },\n",
" \"document-retriever\": {\n",
" \"command\": \"./.venv/bin/python\",\n",
" # mcp_server_rag.py νμΌμ μ λ κ²½λ‘λ‘ μ
λ°μ΄νΈν΄μΌ ν©λλ€\n",
" \"args\": [\"./mcp_server_rag.py\"],\n",
" # stdio λ°©μμΌλ‘ ν΅μ (νμ€ μ
μΆλ ₯ μ¬μ©)\n",
" \"transport\": \"stdio\",\n",
" },\n",
" }\n",
")\n",
"\n",
"\n",
"# 2. λͺ
μμ μΌλ‘ μ°κ²° μ΄κΈ°ν\n",
"await client.__aenter__()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"langgraph μ `create_react_agent` λ₯Ό μ¬μ©νμ¬ μμ΄μ νΈλ₯Ό μμ±ν©λλ€."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"from langgraph.checkpoint.memory import MemorySaver\n",
"from langchain_core.runnables import RunnableConfig\n",
"\n",
"config = RunnableConfig(recursion_limit=30, thread_id=3)\n",
"agent = create_react_agent(model, client.get_tools(), checkpointer=MemorySaver())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`Desktop Commander` λꡬλ₯Ό μ¬μ©νμ¬ ν°λ―Έλ λͺ
λ Ήμ μ€νν©λλ€."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await astream_graph(\n",
" agent,\n",
" {\n",
" \"messages\": \"νμ¬ κ²½λ‘λ₯Ό ν¬ν¨ν νμ ν΄λ ꡬ쑰λ₯Ό tree λ‘ κ·Έλ €μ€. λ¨, .venv ν΄λλ μ μΈνκ³ μΆλ ₯ν΄μ€.\"\n",
" },\n",
" config=config,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"μ΄λ²μλ `Sequential Thinking` λꡬλ₯Ό μ¬μ©νμ¬ λΉκ΅μ 볡μ‘ν μμ
μ μνν μ μλμ§ νμΈν©λλ€."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await astream_graph(\n",
" agent,\n",
" {\n",
" \"messages\": (\n",
" \"`retriever` λꡬλ₯Ό μ¬μ©ν΄μ μΌμ±μ μκ° κ°λ°ν μμ±ν AI κ΄λ ¨ λ΄μ©μ κ²μνκ³ \"\n",
" \"`Sequential Thinking` λꡬλ₯Ό μ¬μ©ν΄μ λ³΄κ³ μλ₯Ό μμ±ν΄μ€.\"\n",
" )\n",
" },\n",
" config=config,\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|