root
commited on
Commit
Β·
7044586
1
Parent(s):
a928595
sss
Browse files
README.md
CHANGED
|
@@ -1,13 +1,48 @@
|
|
| 1 |
---
|
| 2 |
-
title: Resume Screener
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: streamlit
|
| 7 |
-
sdk_version: 1.
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Resume Screener and Skill Extractor
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: green
|
| 6 |
sdk: streamlit
|
| 7 |
+
sdk_version: 1.31.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# Resume Screener and Skill Extractor
|
| 14 |
+
|
| 15 |
+
An intelligent resume screening application that analyzes resumes and extracts relevant skills based on job positions. Built with Streamlit and Hugging Face transformers.
|
| 16 |
+
|
| 17 |
+
## Features
|
| 18 |
+
|
| 19 |
+
- Upload PDF or DOCX resumes
|
| 20 |
+
- Select from multiple job positions
|
| 21 |
+
- Automatic skill matching with percentage score
|
| 22 |
+
- AI-powered resume summarization
|
| 23 |
+
- Skills gap analysis
|
| 24 |
+
- Modern, user-friendly interface
|
| 25 |
+
|
| 26 |
+
## Supported Job Positions
|
| 27 |
+
|
| 28 |
+
- Software Engineer
|
| 29 |
+
- Interaction Designer
|
| 30 |
+
- Data Scientist
|
| 31 |
+
|
| 32 |
+
## How it Works
|
| 33 |
+
|
| 34 |
+
1. Upload your resume (PDF or DOCX format)
|
| 35 |
+
2. Select the target job position
|
| 36 |
+
3. The app will analyze your resume and provide:
|
| 37 |
+
- A list of matched skills with a match percentage
|
| 38 |
+
- An AI-generated summary of your resume
|
| 39 |
+
- Suggestions for skills you might want to develop
|
| 40 |
+
|
| 41 |
+
## Technologies Used
|
| 42 |
+
|
| 43 |
+
- Streamlit for the web interface
|
| 44 |
+
- Hugging Face Transformers for AI-powered text summarization
|
| 45 |
+
- spaCy for natural language processing
|
| 46 |
+
- PyPDF2 and python-docx for document parsing
|
| 47 |
+
|
| 48 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
|
@@ -1,4 +1,148 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
|
| 3 |
+
st.set_page_config(
|
| 4 |
+
page_title="Resume Screener & Skill Extractor",
|
| 5 |
+
page_icon="π",
|
| 6 |
+
layout="wide"
|
| 7 |
+
)
|
| 8 |
+
|
| 9 |
+
# Load the NLP model
|
| 10 |
+
@st.cache_resource
|
| 11 |
+
def load_models():
|
| 12 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
| 13 |
+
nlp = spacy.load("en_core_web_sm")
|
| 14 |
+
return summarizer, nlp
|
| 15 |
+
|
| 16 |
+
# Initialize models
|
| 17 |
+
summarizer, nlp = load_models()
|
| 18 |
+
|
| 19 |
+
# Job descriptions and required skills
|
| 20 |
+
job_descriptions = {
|
| 21 |
+
"Software Engineer": {
|
| 22 |
+
"skills": ["python", "java", "javascript", "sql", "algorithms", "data structures",
|
| 23 |
+
"git", "cloud", "web development", "software development", "coding"],
|
| 24 |
+
"description": "Looking for software engineers with strong programming skills and experience in software development."
|
| 25 |
+
},
|
| 26 |
+
"Interaction Designer": {
|
| 27 |
+
"skills": ["ui", "ux", "user research", "wireframing", "prototyping", "figma",
|
| 28 |
+
"sketch", "adobe", "design thinking", "interaction design"],
|
| 29 |
+
"description": "Seeking interaction designers with expertise in user experience and interface design."
|
| 30 |
+
},
|
| 31 |
+
"Data Scientist": {
|
| 32 |
+
"skills": ["python", "r", "statistics", "machine learning", "data analysis",
|
| 33 |
+
"sql", "tensorflow", "pytorch", "pandas", "numpy"],
|
| 34 |
+
"description": "Looking for data scientists with strong analytical and machine learning skills."
|
| 35 |
+
}
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
def extract_text_from_pdf(pdf_file):
|
| 39 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
| 40 |
+
text = ""
|
| 41 |
+
for page in pdf_reader.pages:
|
| 42 |
+
text += page.extract_text()
|
| 43 |
+
return text
|
| 44 |
+
|
| 45 |
+
def extract_text_from_docx(docx_file):
|
| 46 |
+
doc = Document(docx_file)
|
| 47 |
+
text = ""
|
| 48 |
+
for paragraph in doc.paragraphs:
|
| 49 |
+
text += paragraph.text + "\n"
|
| 50 |
+
return text
|
| 51 |
+
|
| 52 |
+
def analyze_resume(text, job_title):
|
| 53 |
+
# Extract relevant skills
|
| 54 |
+
doc = nlp(text.lower())
|
| 55 |
+
found_skills = []
|
| 56 |
+
required_skills = job_descriptions[job_title]["skills"]
|
| 57 |
+
|
| 58 |
+
for skill in required_skills:
|
| 59 |
+
if skill in text.lower():
|
| 60 |
+
found_skills.append(skill)
|
| 61 |
+
|
| 62 |
+
# Generate summary
|
| 63 |
+
chunks = [text[i:i + 1000] for i in range(0, len(text), 1000)]
|
| 64 |
+
summaries = []
|
| 65 |
+
for chunk in chunks[:3]: # Process first 3000 characters to avoid token limits
|
| 66 |
+
summary = summarizer(chunk, max_length=150, min_length=50, do_sample=False)[0]["summary_text"]
|
| 67 |
+
summaries.append(summary)
|
| 68 |
+
|
| 69 |
+
return found_skills, " ".join(summaries)
|
| 70 |
+
|
| 71 |
+
# Streamlit UI
|
| 72 |
+
st.title("π Resume Screener & Skill Extractor")
|
| 73 |
+
|
| 74 |
+
# Add description
|
| 75 |
+
st.markdown("""
|
| 76 |
+
This app helps recruiters analyze resumes by:
|
| 77 |
+
- Extracting relevant skills for specific job positions
|
| 78 |
+
- Generating a concise summary of the candidate's background
|
| 79 |
+
- Identifying skill gaps for the selected role
|
| 80 |
+
""")
|
| 81 |
+
|
| 82 |
+
# Create two columns
|
| 83 |
+
col1, col2 = st.columns([2, 1])
|
| 84 |
+
|
| 85 |
+
with col1:
|
| 86 |
+
# File upload
|
| 87 |
+
uploaded_file = st.file_uploader("Upload Resume (PDF or DOCX)", type=["pdf", "docx"])
|
| 88 |
+
|
| 89 |
+
with col2:
|
| 90 |
+
# Job selection
|
| 91 |
+
job_title = st.selectbox("Select Job Position", list(job_descriptions.keys()))
|
| 92 |
+
|
| 93 |
+
# Show job description
|
| 94 |
+
if job_title:
|
| 95 |
+
st.info(f"**Required Skills:**\n" +
|
| 96 |
+
"\n".join([f"- {skill.title()}" for skill in job_descriptions[job_title]["skills"]]))
|
| 97 |
+
|
| 98 |
+
if uploaded_file and job_title:
|
| 99 |
+
try:
|
| 100 |
+
# Show spinner while processing
|
| 101 |
+
with st.spinner("Analyzing resume..."):
|
| 102 |
+
# Extract text based on file type
|
| 103 |
+
if uploaded_file.type == "application/pdf":
|
| 104 |
+
text = extract_text_from_pdf(uploaded_file)
|
| 105 |
+
else:
|
| 106 |
+
text = extract_text_from_docx(uploaded_file)
|
| 107 |
+
|
| 108 |
+
# Analyze resume
|
| 109 |
+
found_skills, summary = analyze_resume(text, job_title)
|
| 110 |
+
|
| 111 |
+
# Display results in tabs
|
| 112 |
+
tab1, tab2, tab3 = st.tabs(["π Skills Match", "π Resume Summary", "π― Skills Gap"])
|
| 113 |
+
|
| 114 |
+
with tab1:
|
| 115 |
+
# Display matched skills
|
| 116 |
+
st.subheader("π― Matched Skills")
|
| 117 |
+
if found_skills:
|
| 118 |
+
for skill in found_skills:
|
| 119 |
+
st.success(f"β
{skill.title()}")
|
| 120 |
+
|
| 121 |
+
# Calculate match percentage
|
| 122 |
+
match_percentage = len(found_skills) / len(job_descriptions[job_title]["skills"]) * 100
|
| 123 |
+
st.metric("Skills Match", f"{match_percentage:.1f}%")
|
| 124 |
+
else:
|
| 125 |
+
st.warning("No direct skill matches found.")
|
| 126 |
+
|
| 127 |
+
with tab2:
|
| 128 |
+
# Display resume summary
|
| 129 |
+
st.subheader("π Resume Summary")
|
| 130 |
+
st.write(summary)
|
| 131 |
+
|
| 132 |
+
with tab3:
|
| 133 |
+
# Display missing skills
|
| 134 |
+
st.subheader("π Skills to Develop")
|
| 135 |
+
missing_skills = [skill for skill in job_descriptions[job_title]["skills"]
|
| 136 |
+
if skill not in found_skills]
|
| 137 |
+
if missing_skills:
|
| 138 |
+
for skill in missing_skills:
|
| 139 |
+
st.warning(f"β {skill.title()}")
|
| 140 |
+
else:
|
| 141 |
+
st.success("Great! The candidate has all the required skills!")
|
| 142 |
+
|
| 143 |
+
except Exception as e:
|
| 144 |
+
st.error(f"An error occurred while processing the resume: {str(e)}")
|
| 145 |
+
|
| 146 |
+
# Add footer
|
| 147 |
+
st.markdown("---")
|
| 148 |
+
st.markdown("Made with β€οΈ using Streamlit and Hugging Face")
|