Create styleformer.py
Browse files- styleformer.py +161 -0
styleformer.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class Styleformer():
|
2 |
+
|
3 |
+
def __init__(
|
4 |
+
self,
|
5 |
+
style=0,
|
6 |
+
ctf_model_tag="jaimin/Informal_to_formal",
|
7 |
+
ftc_model_tag="jaimin/formal_to_informal",
|
8 |
+
atp_model_tag="jaimin/Active_to_passive",
|
9 |
+
pta_model_tag="jaimin/Passive_to_active",
|
10 |
+
adequacy_model_tag="jaimin/parrot_adequacy_model",
|
11 |
+
):
|
12 |
+
from transformers import AutoTokenizer
|
13 |
+
from transformers import AutoModelForSeq2SeqLM
|
14 |
+
from adequacy import Adequacy
|
15 |
+
|
16 |
+
self.style = style
|
17 |
+
self.adequacy = adequacy_model_tag and Adequacy(model_tag=adequacy_model_tag, use_auth_token="access")
|
18 |
+
self.model_loaded = False
|
19 |
+
|
20 |
+
if self.style == 0:
|
21 |
+
self.ctf_tokenizer = AutoTokenizer.from_pretrained(ctf_model_tag, use_auth_token="access")
|
22 |
+
self.ctf_model = AutoModelForSeq2SeqLM.from_pretrained(ctf_model_tag, use_auth_token="access")
|
23 |
+
print("Casual to Formal model loaded...")
|
24 |
+
self.model_loaded = True
|
25 |
+
elif self.style == 1:
|
26 |
+
self.ftc_tokenizer = AutoTokenizer.from_pretrained(ftc_model_tag, use_auth_token="access")
|
27 |
+
self.ftc_model = AutoModelForSeq2SeqLM.from_pretrained(ftc_model_tag, use_auth_token="access")
|
28 |
+
print("Formal to Casual model loaded...")
|
29 |
+
self.model_loaded = True
|
30 |
+
elif self.style == 2:
|
31 |
+
self.atp_tokenizer = AutoTokenizer.from_pretrained(atp_model_tag,use_auth_token="access")
|
32 |
+
self.atp_model = AutoModelForSeq2SeqLM.from_pretrained(atp_model_tag,use_auth_token="access")
|
33 |
+
print("Active to Passive model loaded...")
|
34 |
+
self.model_loaded = True
|
35 |
+
elif self.style == 3:
|
36 |
+
self.pta_tokenizer = AutoTokenizer.from_pretrained(pta_model_tag,use_auth_token="access")
|
37 |
+
self.pta_model = AutoModelForSeq2SeqLM.from_pretrained(pta_model_tag,use_auth_token="access")
|
38 |
+
print("Passive to Active model loaded...")
|
39 |
+
self.model_loaded = True
|
40 |
+
else:
|
41 |
+
print("Only CTF, FTC, ATP and PTA are supported in the pre-release...stay tuned")
|
42 |
+
|
43 |
+
def transfer(self, input_sentence, inference_on=-1, quality_filter=0.95, max_candidates=5):
|
44 |
+
if self.model_loaded:
|
45 |
+
if inference_on == -1:
|
46 |
+
device = "cpu"
|
47 |
+
elif inference_on >= 0 and inference_on < 999:
|
48 |
+
device = "cpu:" + str(inference_on)
|
49 |
+
else:
|
50 |
+
device = "cpu"
|
51 |
+
print("Onnx + Quantisation is not supported in the pre-release...stay tuned.")
|
52 |
+
|
53 |
+
if self.style == 0:
|
54 |
+
output_sentence = self._casual_to_formal(input_sentence, device, quality_filter, max_candidates)
|
55 |
+
return output_sentence
|
56 |
+
elif self.style == 1:
|
57 |
+
output_sentence = self._formal_to_casual(input_sentence, device, quality_filter, max_candidates)
|
58 |
+
return output_sentence
|
59 |
+
elif self.style == 2:
|
60 |
+
output_sentence = self._active_to_passive(input_sentence, device)
|
61 |
+
return output_sentence
|
62 |
+
elif self.style == 3:
|
63 |
+
output_sentence = self._passive_to_active(input_sentence, device)
|
64 |
+
return output_sentence
|
65 |
+
|
66 |
+
else:
|
67 |
+
print("Models aren't loaded for this style, please use the right style during init")
|
68 |
+
|
69 |
+
def _formal_to_casual(self, input_sentence, device, quality_filter, max_candidates):
|
70 |
+
ftc_prefix = "transfer Formal to Casual: "
|
71 |
+
src_sentence = input_sentence
|
72 |
+
input_sentence = ftc_prefix + input_sentence
|
73 |
+
input_ids = self.ftc_tokenizer.encode(input_sentence, return_tensors='pt')
|
74 |
+
self.ftc_model = self.ftc_model.to(device)
|
75 |
+
input_ids = input_ids.to(device)
|
76 |
+
|
77 |
+
preds = self.ftc_model.generate(
|
78 |
+
input_ids,
|
79 |
+
do_sample=True,
|
80 |
+
max_length=32,
|
81 |
+
top_k=50,
|
82 |
+
top_p=0.95,
|
83 |
+
early_stopping=True,
|
84 |
+
num_return_sequences=max_candidates)
|
85 |
+
|
86 |
+
gen_sentences = set()
|
87 |
+
for pred in preds:
|
88 |
+
gen_sentences.add(self.ftc_tokenizer.decode(pred, skip_special_tokens=True).strip())
|
89 |
+
|
90 |
+
adequacy_scored_phrases = self.adequacy.score(src_sentence, list(gen_sentences), quality_filter, device)
|
91 |
+
ranked_sentences = sorted(adequacy_scored_phrases.items(), key=lambda x: x[1], reverse=True)
|
92 |
+
if len(ranked_sentences) > 0:
|
93 |
+
return ranked_sentences[0][0]
|
94 |
+
else:
|
95 |
+
return None
|
96 |
+
|
97 |
+
def _casual_to_formal(self, input_sentence, device, quality_filter, max_candidates):
|
98 |
+
ctf_prefix = "transfer Casual to Formal: "
|
99 |
+
src_sentence = input_sentence
|
100 |
+
input_sentence = ctf_prefix + input_sentence
|
101 |
+
input_ids = self.ctf_tokenizer.encode(input_sentence, return_tensors='pt')
|
102 |
+
self.ctf_model = self.ctf_model.to(device)
|
103 |
+
input_ids = input_ids.to(device)
|
104 |
+
|
105 |
+
preds = self.ctf_model.generate(
|
106 |
+
input_ids,
|
107 |
+
do_sample=True,
|
108 |
+
max_length=32,
|
109 |
+
top_k=50,
|
110 |
+
top_p=0.95,
|
111 |
+
early_stopping=True,
|
112 |
+
num_return_sequences=max_candidates)
|
113 |
+
|
114 |
+
gen_sentences = set()
|
115 |
+
for pred in preds:
|
116 |
+
gen_sentences.add(self.ctf_tokenizer.decode(pred, skip_special_tokens=True).strip())
|
117 |
+
|
118 |
+
adequacy_scored_phrases = self.adequacy.score(src_sentence, list(gen_sentences), quality_filter, device)
|
119 |
+
ranked_sentences = sorted(adequacy_scored_phrases.items(), key=lambda x: x[1], reverse=True)
|
120 |
+
if len(ranked_sentences) > 0:
|
121 |
+
return ranked_sentences[0][0]
|
122 |
+
else:
|
123 |
+
return None
|
124 |
+
|
125 |
+
def _active_to_passive(self, input_sentence, device):
|
126 |
+
atp_prefix = "transfer Active to Passive: "
|
127 |
+
src_sentence = input_sentence
|
128 |
+
input_sentence = atp_prefix + input_sentence
|
129 |
+
input_ids = self.atp_tokenizer.encode(input_sentence, return_tensors='pt')
|
130 |
+
self.atp_model = self.atp_model.to(device)
|
131 |
+
input_ids = input_ids.to(device)
|
132 |
+
|
133 |
+
preds = self.atp_model.generate(
|
134 |
+
input_ids,
|
135 |
+
do_sample=True,
|
136 |
+
max_length=32,
|
137 |
+
top_k=50,
|
138 |
+
top_p=0.95,
|
139 |
+
early_stopping=True,
|
140 |
+
num_return_sequences=1)
|
141 |
+
|
142 |
+
return self.atp_tokenizer.decode(preds[0], skip_special_tokens=True).strip()
|
143 |
+
|
144 |
+
def _passive_to_active(self, input_sentence, device):
|
145 |
+
pta_prefix = "transfer Passive to Active: "
|
146 |
+
src_sentence = input_sentence
|
147 |
+
input_sentence = pta_prefix + input_sentence
|
148 |
+
input_ids = self.pta_tokenizer.encode(input_sentence, return_tensors='pt')
|
149 |
+
self.pta_model = self.pta_model.to(device)
|
150 |
+
input_ids = input_ids.to(device)
|
151 |
+
|
152 |
+
preds = self.pta_model.generate(
|
153 |
+
input_ids,
|
154 |
+
do_sample=True,
|
155 |
+
max_length=32,
|
156 |
+
top_k=50,
|
157 |
+
top_p=0.95,
|
158 |
+
early_stopping=True,
|
159 |
+
num_return_sequences=1)
|
160 |
+
|
161 |
+
return self.pta_tokenizer.decode(preds[0], skip_special_tokens=True).strip()
|