Spaces:
Runtime error
Runtime error
File size: 2,088 Bytes
048bc6a aa4d252 048bc6a aa4d252 048bc6a aa4d252 048bc6a aa4d252 85ba2f7 aa4d252 85ba2f7 aa4d252 85ba2f7 aa4d252 85ba2f7 aa4d252 85ba2f7 aa4d252 85ba2f7 aa4d252 85ba2f7 aa4d252 85ba2f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
from PIL import Image
import requests
import gradio as gr
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel
import torch
from label import predict_environment,recursion_change_bn,load_labels,hook_feature,returnCAM,returnTF,load_model
git_processor = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")
blip_processor = AutoProcessor.from_pretrained("jaimin/Imagecap")
blip_model = BlipForConditionalGeneration.from_pretrained("jaimin/Imagecap")
device = "cuda" if torch.cuda.is_available() else "cpu"
git_model_large_textcaps.to(device)
blip_model_large.to(device)
def generate_caption(processor, model, image, use_float_16=False):
inputs = processor(images=image, return_tensors="pt").to(device)
if use_float_16:
inputs = inputs.to(torch.float16)
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption
def generate_captions(image):
img = Image.open(image)
caption_git = generate_caption(git_processor, git_model, img)
caption_blip = generate_caption(blip_processor, blip_model, img)
env, scene = predict_environment(img)
return env,scene,caption_git_large_textcaps, caption_blip_large
outputs = [gr.outputs.Textbox(label="Environment"), gr.outputs.Textbox(label="Objects detected"), gr.outputs.Textbox(label="Caption generated by GIT"), gr.outputs.Textbox(label="Caption generated by BLIP")]
title = "Image Cap with Scene"
description = " Image caption with scene"
interface = gr.Interface(fn=generate_captions,
inputs=gr.inputs.Image(type="pil"),
outputs=outputs,
title=title,
description=description,
enable_queue=True)
interface.launch(debug=True) |