File size: 6,456 Bytes
048bc6a
 
 
aa4d252
 
6651c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
048bc6a
 
 
aa4d252
 
048bc6a
aa4d252
 
048bc6a
aa4d252
2208cae
0b66865
85ba2f7
aa4d252
 
85ba2f7
aa4d252
 
 
 
 
 
 
85ba2f7
aa4d252
 
2b3702d
 
85ba2f7
2b3702d
2b9a369
85ba2f7
aa4d252
85ba2f7
aa4d252
85ba2f7
aa4d252
 
 
 
 
 
 
 
 
85ba2f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from PIL import Image
import requests
import gradio as gr
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel
import torch
import torch
from torch.autograd import Variable as V
import torchvision.models as models
from torchvision import transforms as trn
from torch.nn import functional as F
import os
import numpy as np
import cv2
from PIL import Image


def recursion_change_bn(module):
    if isinstance(module, torch.nn.BatchNorm2d):
        module.track_running_stats = 1
    else:
        for i, (name, module1) in enumerate(module._modules.items()):
            module1 = recursion_change_bn(module1)
    return module

def load_labels():
    # prepare all the labels
    # scene category relevant
    file_name_category = 'categories_places365.txt'
    classes = list()
    with open(file_name_category) as class_file:
        for line in class_file:
            classes.append(line.strip().split(' ')[0][3:])
    classes = tuple(classes)

    # indoor and outdoor relevant
    file_name_IO = 'IO_places365.txt'
    with open(file_name_IO) as f:
        lines = f.readlines()
        labels_IO = []
        for line in lines:
            items = line.rstrip().split()
            labels_IO.append(int(items[-1]) -1) # 0 is indoor, 1 is outdoor
    labels_IO = np.array(labels_IO)

    # scene attribute relevant
    file_name_attribute = 'labels_sunattribute.txt'
    with open(file_name_attribute) as f:
        lines = f.readlines()
        labels_attribute = [item.rstrip() for item in lines]
    file_name_W = 'W_sceneattribute_wideresnet18.npy'
    W_attribute = np.load(file_name_W)

    return classes, labels_IO, labels_attribute, W_attribute

def hook_feature(module, input, output):
    return np.squeeze(output.data.cpu().numpy())

def returnCAM(feature_conv, weight_softmax, class_idx):
    # generate the class activation maps upsample to 256x256
    size_upsample = (256, 256)
    nc, h, w = feature_conv.shape
    output_cam = []
    for idx in class_idx:
        cam = weight_softmax[class_idx].dot(feature_conv.reshape((nc, h*w)))
        cam = cam.reshape(h, w)
        cam = cam - np.min(cam)
        cam_img = cam / np.max(cam)
        cam_img = np.uint8(255 * cam_img)
        output_cam.append(cv2.resize(cam_img, size_upsample))
    return output_cam

def returnTF():
# load the image transformer
    tf = trn.Compose([
        trn.Resize((224,224)),
        trn.ToTensor(),
        trn.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    return tf


def load_model():
    # this model has a last conv feature map as 14x14

    model_file = 'wideresnet18_places365.pth.tar'
    import wideresnet
    model = wideresnet.resnet18(num_classes=365)
    checkpoint = torch.load(model_file, map_location=lambda storage, loc: storage)
    state_dict = {str.replace(k,'module.',''): v for k,v in checkpoint['state_dict'].items()}
    model.load_state_dict(state_dict)
    
    # hacky way to deal with the upgraded batchnorm2D and avgpool layers...
    for i, (name, module) in enumerate(model._modules.items()):
        module = recursion_change_bn(model)
    model.avgpool = torch.nn.AvgPool2d(kernel_size=14, stride=1, padding=0)
    
    model.eval()

    # hook the feature extractor
    features_names = ['layer4','avgpool'] # this is the last conv layer of the resnet
    for name in features_names:
        model._modules.get(name).register_forward_hook(hook_feature)
    return model

# load the labels
classes, labels_IO, labels_attribute, W_attribute = load_labels()

# load the model
features_blobs = []
model = load_model()


# load the transformer
tf = returnTF() # image transformer

# get the softmax weight
params = list(model.parameters())
weight_softmax = params[-2].data.numpy()
weight_softmax[weight_softmax<0] = 0

def predict(img):
    #img = Image.open('6.jpg')
    input_img = V(tf(img).unsqueeze(0))
    logit = model.forward(input_img)
    h_x = F.softmax(logit, 1).data.squeeze()
    probs, idx = h_x.sort(0, True)
    probs = probs.numpy()
    idx = idx.numpy()
    io_image = np.mean(labels_IO[idx[:10]]) # vote for the indoor or outdoor
    env_image = []
    if io_image < 0.5:
        env_image.append('Indoor')
        #print('--TYPE OF ENVIRONMENT: indoor')
    else:
        env_image.append('Outdoor')
        #print('--TYPE OF ENVIRONMENT: outdoor')

    # output the prediction of scene category
    #print('--SCENE CATEGORIES:')
    scene_cat=[]
    for i in range(0, 5):
        scene_cat.append('{:.3f} -> {}'.format(probs[i], classes[idx[i]]))
        #print('{:.3f} -> {}'.format(probs[i], classes[idx[i]]))
        
    return env_image,scene_cat



git_processor = AutoProcessor.from_pretrained("microsoft/git-large-r-textcaps")
git_model = AutoModelForCausalLM.from_pretrained("microsoft/git-large-r-textcaps")

blip_processor = AutoProcessor.from_pretrained("jaimin/Imagecap")
blip_model = BlipForConditionalGeneration.from_pretrained("jaimin/Imagecap")

device = "cuda" if torch.cuda.is_available() else "cpu"
git_model.to(device)
blip_model.to(device)

def generate_caption(processor, model, image, use_float_16=False):
    inputs = processor(images=image, return_tensors="pt").to(device)

    if use_float_16:
        inputs = inputs.to(torch.float16)
    
    generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
    generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
   
    return generated_caption

def generate_captions(image):
    
    #img = Image.open(image)
    caption_git = generate_caption(git_processor, git_model, image)

    caption_blip = generate_caption(blip_processor, blip_model, image)
    env, scene = predict(image)

    return env,scene,caption_git_large_textcaps, caption_blip_large

outputs = [gr.outputs.Textbox(label="Environment"), gr.outputs.Textbox(label="Objects detected"), gr.outputs.Textbox(label="Caption generated by GIT"), gr.outputs.Textbox(label="Caption generated by BLIP")] 

title = "Image Cap with Scene"
description = " Image caption with scene"

interface = gr.Interface(fn=generate_captions, 
                         inputs=gr.inputs.Image(type="pil"),
                         outputs=outputs,
                         title=title,
                         description=description,
                         enable_queue=True)
interface.launch(debug=True)