Spaces:
Runtime error
Runtime error
Upload wideresnet.py
Browse files- wideresnet.py +215 -0
wideresnet.py
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch.nn as nn
|
| 2 |
+
import math
|
| 3 |
+
import torch.utils.model_zoo as model_zoo
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
|
| 7 |
+
'resnet152']
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
model_urls = {
|
| 11 |
+
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
|
| 12 |
+
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
|
| 13 |
+
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
| 14 |
+
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
| 15 |
+
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
| 20 |
+
"3x3 convolution with padding"
|
| 21 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
| 22 |
+
padding=1, bias=False)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class BasicBlock(nn.Module):
|
| 26 |
+
expansion = 1
|
| 27 |
+
|
| 28 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 29 |
+
super(BasicBlock, self).__init__()
|
| 30 |
+
self.conv1 = conv3x3(inplanes, planes, stride)
|
| 31 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
| 32 |
+
self.relu = nn.ReLU(inplace=True)
|
| 33 |
+
self.conv2 = conv3x3(planes, planes)
|
| 34 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 35 |
+
self.downsample = downsample
|
| 36 |
+
self.stride = stride
|
| 37 |
+
|
| 38 |
+
def forward(self, x):
|
| 39 |
+
residual = x
|
| 40 |
+
|
| 41 |
+
out = self.conv1(x)
|
| 42 |
+
out = self.bn1(out)
|
| 43 |
+
out = self.relu(out)
|
| 44 |
+
|
| 45 |
+
out = self.conv2(out)
|
| 46 |
+
out = self.bn2(out)
|
| 47 |
+
|
| 48 |
+
if self.downsample is not None:
|
| 49 |
+
residual = self.downsample(x)
|
| 50 |
+
|
| 51 |
+
out += residual
|
| 52 |
+
out = self.relu(out)
|
| 53 |
+
|
| 54 |
+
return out
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class Bottleneck(nn.Module):
|
| 58 |
+
expansion = 4
|
| 59 |
+
|
| 60 |
+
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
| 61 |
+
super(Bottleneck, self).__init__()
|
| 62 |
+
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
| 63 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
| 64 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
| 65 |
+
padding=1, bias=False)
|
| 66 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
| 67 |
+
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
|
| 68 |
+
self.bn3 = nn.BatchNorm2d(planes * 4)
|
| 69 |
+
self.relu = nn.ReLU(inplace=True)
|
| 70 |
+
self.downsample = downsample
|
| 71 |
+
self.stride = stride
|
| 72 |
+
|
| 73 |
+
def forward(self, x):
|
| 74 |
+
residual = x
|
| 75 |
+
|
| 76 |
+
out = self.conv1(x)
|
| 77 |
+
out = self.bn1(out)
|
| 78 |
+
out = self.relu(out)
|
| 79 |
+
|
| 80 |
+
out = self.conv2(out)
|
| 81 |
+
out = self.bn2(out)
|
| 82 |
+
out = self.relu(out)
|
| 83 |
+
|
| 84 |
+
out = self.conv3(out)
|
| 85 |
+
out = self.bn3(out)
|
| 86 |
+
|
| 87 |
+
if self.downsample is not None:
|
| 88 |
+
residual = self.downsample(x)
|
| 89 |
+
|
| 90 |
+
out += residual
|
| 91 |
+
out = self.relu(out)
|
| 92 |
+
|
| 93 |
+
return out
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class ResNet(nn.Module):
|
| 97 |
+
|
| 98 |
+
def __init__(self, block, layers, num_classes=1000):
|
| 99 |
+
self.inplanes = 64
|
| 100 |
+
super(ResNet, self).__init__()
|
| 101 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
| 102 |
+
bias=False)
|
| 103 |
+
self.bn1 = nn.BatchNorm2d(64)
|
| 104 |
+
self.relu = nn.ReLU(inplace=True)
|
| 105 |
+
#self.maxpool = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) # previous stride is 2
|
| 106 |
+
self.layer1 = self._make_layer(block, 64, layers[0])
|
| 107 |
+
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
| 108 |
+
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
| 109 |
+
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
| 110 |
+
self.avgpool = nn.AvgPool2d(14)
|
| 111 |
+
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
| 112 |
+
|
| 113 |
+
for m in self.modules():
|
| 114 |
+
if isinstance(m, nn.Conv2d):
|
| 115 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 116 |
+
m.weight.data.normal_(0, math.sqrt(2. / n))
|
| 117 |
+
elif isinstance(m, nn.BatchNorm2d):
|
| 118 |
+
#m.weight.data.fill_(1)
|
| 119 |
+
#m.bias.data.zero_()
|
| 120 |
+
nn.init.constant_(m.weight, 1)
|
| 121 |
+
nn.init.constant_(m.bias, 0)
|
| 122 |
+
|
| 123 |
+
def _make_layer(self, block, planes, blocks, stride=1):
|
| 124 |
+
downsample = None
|
| 125 |
+
if stride != 1 or self.inplanes != planes * block.expansion:
|
| 126 |
+
downsample = nn.Sequential(
|
| 127 |
+
nn.Conv2d(self.inplanes, planes * block.expansion,
|
| 128 |
+
kernel_size=1, stride=stride, bias=False),
|
| 129 |
+
nn.BatchNorm2d(planes * block.expansion),
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
layers = []
|
| 133 |
+
layers.append(block(self.inplanes, planes, stride, downsample))
|
| 134 |
+
self.inplanes = planes * block.expansion
|
| 135 |
+
for i in range(1, blocks):
|
| 136 |
+
layers.append(block(self.inplanes, planes))
|
| 137 |
+
|
| 138 |
+
return nn.Sequential(*layers)
|
| 139 |
+
|
| 140 |
+
def forward(self, x):
|
| 141 |
+
x = self.conv1(x)
|
| 142 |
+
x = self.bn1(x)
|
| 143 |
+
x = self.relu(x)
|
| 144 |
+
#x = self.maxpool(x)
|
| 145 |
+
|
| 146 |
+
x = self.layer1(x)
|
| 147 |
+
x = self.layer2(x)
|
| 148 |
+
x = self.layer3(x)
|
| 149 |
+
x = self.layer4(x)
|
| 150 |
+
|
| 151 |
+
x = self.avgpool(x)
|
| 152 |
+
x = x.view(x.size(0), -1)
|
| 153 |
+
x = self.fc(x)
|
| 154 |
+
|
| 155 |
+
return x
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def resnet18(pretrained=False, **kwargs):
|
| 159 |
+
"""Constructs a ResNet-18 model.
|
| 160 |
+
|
| 161 |
+
Args:
|
| 162 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
| 163 |
+
"""
|
| 164 |
+
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
|
| 165 |
+
if pretrained:
|
| 166 |
+
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
|
| 167 |
+
return model
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def resnet34(pretrained=False, **kwargs):
|
| 171 |
+
"""Constructs a ResNet-34 model.
|
| 172 |
+
|
| 173 |
+
Args:
|
| 174 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
| 175 |
+
"""
|
| 176 |
+
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
|
| 177 |
+
if pretrained:
|
| 178 |
+
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
|
| 179 |
+
return model
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def resnet50(pretrained=False, **kwargs):
|
| 183 |
+
"""Constructs a ResNet-50 model.
|
| 184 |
+
|
| 185 |
+
Args:
|
| 186 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
| 187 |
+
"""
|
| 188 |
+
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
|
| 189 |
+
if pretrained:
|
| 190 |
+
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
|
| 191 |
+
return model
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def resnet101(pretrained=False, **kwargs):
|
| 195 |
+
"""Constructs a ResNet-101 model.
|
| 196 |
+
|
| 197 |
+
Args:
|
| 198 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
| 199 |
+
"""
|
| 200 |
+
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
|
| 201 |
+
if pretrained:
|
| 202 |
+
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
|
| 203 |
+
return model
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def resnet152(pretrained=False, **kwargs):
|
| 207 |
+
"""Constructs a ResNet-152 model.
|
| 208 |
+
|
| 209 |
+
Args:
|
| 210 |
+
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
| 211 |
+
"""
|
| 212 |
+
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
|
| 213 |
+
if pretrained:
|
| 214 |
+
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
|
| 215 |
+
return model
|