jaimin commited on
Commit
fa580c5
·
1 Parent(s): 9c604fb

Update label.py

Browse files
Files changed (1) hide show
  1. label.py +15 -19
label.py CHANGED
@@ -98,34 +98,30 @@ def load_model():
98
  model._modules.get(name).register_forward_hook(hook_feature)
99
  return model
100
 
 
 
 
 
 
 
101
 
102
- def predict_environment(img):
103
- # load the labels
104
- classes, labels_IO, labels_attribute, W_attribute = load_labels()
105
-
106
- # load the model
107
- features_blobs = []
108
- model = load_model()
109
-
110
- # load the transformer
111
- tf = returnTF() # image transformer
112
 
113
- # get the softmax weight
114
- params = list(model.parameters())
115
- weight_softmax = params[-2].data.numpy()
116
- weight_softmax[weight_softmax<0] = 0
117
 
118
- #img = Image.open(image)
 
 
 
 
 
 
119
  input_img = V(tf(img).unsqueeze(0))
120
-
121
- # forward pass
122
  logit = model.forward(input_img)
123
  h_x = F.softmax(logit, 1).data.squeeze()
124
  probs, idx = h_x.sort(0, True)
125
  probs = probs.numpy()
126
  idx = idx.numpy()
127
-
128
- # output the IO prediction
129
  io_image = np.mean(labels_IO[idx[:10]]) # vote for the indoor or outdoor
130
  env_image = []
131
  if io_image < 0.5:
 
98
  model._modules.get(name).register_forward_hook(hook_feature)
99
  return model
100
 
101
+ # load the labels
102
+ classes, labels_IO, labels_attribute, W_attribute = load_labels()
103
+
104
+ # load the model
105
+ features_blobs = []
106
+ model = load_model()
107
 
 
 
 
 
 
 
 
 
 
 
108
 
109
+ # load the transformer
110
+ tf = returnTF() # image transformer
 
 
111
 
112
+ # get the softmax weight
113
+ params = list(model.parameters())
114
+ weight_softmax = params[-2].data.numpy()
115
+ weight_softmax[weight_softmax<0] = 0
116
+
117
+ def predict(img):
118
+ img = Image.open('6.jpg')
119
  input_img = V(tf(img).unsqueeze(0))
 
 
120
  logit = model.forward(input_img)
121
  h_x = F.softmax(logit, 1).data.squeeze()
122
  probs, idx = h_x.sort(0, True)
123
  probs = probs.numpy()
124
  idx = idx.numpy()
 
 
125
  io_image = np.mean(labels_IO[idx[:10]]) # vote for the indoor or outdoor
126
  env_image = []
127
  if io_image < 0.5: