Spaces:
Runtime error
Runtime error
Update label.py
Browse files
label.py
CHANGED
@@ -98,34 +98,30 @@ def load_model():
|
|
98 |
model._modules.get(name).register_forward_hook(hook_feature)
|
99 |
return model
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
def predict_environment(img):
|
103 |
-
# load the labels
|
104 |
-
classes, labels_IO, labels_attribute, W_attribute = load_labels()
|
105 |
-
|
106 |
-
# load the model
|
107 |
-
features_blobs = []
|
108 |
-
model = load_model()
|
109 |
-
|
110 |
-
# load the transformer
|
111 |
-
tf = returnTF() # image transformer
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
weight_softmax = params[-2].data.numpy()
|
116 |
-
weight_softmax[weight_softmax<0] = 0
|
117 |
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
input_img = V(tf(img).unsqueeze(0))
|
120 |
-
|
121 |
-
# forward pass
|
122 |
logit = model.forward(input_img)
|
123 |
h_x = F.softmax(logit, 1).data.squeeze()
|
124 |
probs, idx = h_x.sort(0, True)
|
125 |
probs = probs.numpy()
|
126 |
idx = idx.numpy()
|
127 |
-
|
128 |
-
# output the IO prediction
|
129 |
io_image = np.mean(labels_IO[idx[:10]]) # vote for the indoor or outdoor
|
130 |
env_image = []
|
131 |
if io_image < 0.5:
|
|
|
98 |
model._modules.get(name).register_forward_hook(hook_feature)
|
99 |
return model
|
100 |
|
101 |
+
# load the labels
|
102 |
+
classes, labels_IO, labels_attribute, W_attribute = load_labels()
|
103 |
+
|
104 |
+
# load the model
|
105 |
+
features_blobs = []
|
106 |
+
model = load_model()
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
# load the transformer
|
110 |
+
tf = returnTF() # image transformer
|
|
|
|
|
111 |
|
112 |
+
# get the softmax weight
|
113 |
+
params = list(model.parameters())
|
114 |
+
weight_softmax = params[-2].data.numpy()
|
115 |
+
weight_softmax[weight_softmax<0] = 0
|
116 |
+
|
117 |
+
def predict(img):
|
118 |
+
img = Image.open('6.jpg')
|
119 |
input_img = V(tf(img).unsqueeze(0))
|
|
|
|
|
120 |
logit = model.forward(input_img)
|
121 |
h_x = F.softmax(logit, 1).data.squeeze()
|
122 |
probs, idx = h_x.sort(0, True)
|
123 |
probs = probs.numpy()
|
124 |
idx = idx.numpy()
|
|
|
|
|
125 |
io_image = np.mean(labels_IO[idx[:10]]) # vote for the indoor or outdoor
|
126 |
env_image = []
|
127 |
if io_image < 0.5:
|