from PIL import Image import requests import gradio as gr from transformers import BlipProcessor, BlipForConditionalGeneration model = BlipForConditionalGeneration.from_pretrained('jaimin/Imagecap') processor = BlipProcessor.from_pretrained('jaimin/Imagecap') def predict(image,max_length=64, num_beams=4): image = image.convert('RGB') #image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) inputs = processor(image, return_tensors="pt") #clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] caption_ids = model.generate(inputs, max_length = max_length)[0] caption_text = tokenizer.decode(caption_ids) return processor.decode(caption_ids[0], skip_special_tokens=True) input = gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True) output = gr.outputs.Textbox(label="Captions") title = "ImageCap" interface = gr.Interface( fn=predict, inputs = input, outputs=output, title=title, ) interface.launch(debug=True)