Duplicate from jaimin/Active
Browse filesCo-authored-by: Jaimin Mungalpara <[email protected]>
- .gitattributes +34 -0
- README.md +13 -0
- adequacy.py +40 -0
- app.py +41 -0
- requirements.txt +6 -0
- styleformer.py +161 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Active
|
3 |
+
emoji: 🏢
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.13.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: jaimin/Active
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
adequacy.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
+
|
3 |
+
tokenizer = AutoTokenizer.from_pretrained("jaimin/parrot_adequacy_model")
|
4 |
+
|
5 |
+
model = AutoModelForSequenceClassification.from_pretrained("jaimin/parrot_adequacy_model")
|
6 |
+
|
7 |
+
|
8 |
+
class Adequacy():
|
9 |
+
|
10 |
+
def __init__(self, model_tag='jaimin/parrot_adequacy_model', use_auth_token="access"):
|
11 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
12 |
+
self.adequacy_model = AutoModelForSequenceClassification.from_pretrained(model_tag,use_auth_token="access")
|
13 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_tag,use_auth_token="access")
|
14 |
+
|
15 |
+
def filter(self, input_phrase, para_phrases, adequacy_threshold, device="cpu"):
|
16 |
+
top_adequacy_phrases = []
|
17 |
+
for para_phrase in para_phrases:
|
18 |
+
x = self.tokenizer(input_phrase, para_phrase, return_tensors='pt', max_length=128, truncation=True)
|
19 |
+
self.adequacy_model = self.adequacy_model.to(device)
|
20 |
+
logits = self.adequacy_model(**x).logits
|
21 |
+
probs = logits.softmax(dim=1)
|
22 |
+
prob_label_is_true = probs[:, 1]
|
23 |
+
adequacy_score = prob_label_is_true.item()
|
24 |
+
if adequacy_score >= adequacy_threshold:
|
25 |
+
top_adequacy_phrases.append(para_phrase)
|
26 |
+
return top_adequacy_phrases
|
27 |
+
|
28 |
+
def score(self, input_phrase, para_phrases, adequacy_threshold, device="cpu"):
|
29 |
+
adequacy_scores = {}
|
30 |
+
for para_phrase in para_phrases:
|
31 |
+
x = self.tokenizer(input_phrase, para_phrase, return_tensors='pt', max_length=128, truncation=True)
|
32 |
+
x = x.to(device)
|
33 |
+
self.adequacy_model = self.adequacy_model.to(device)
|
34 |
+
logits = self.adequacy_model(**x).logits
|
35 |
+
probs = logits.softmax(dim=1)
|
36 |
+
prob_label_is_true = probs[:, 1]
|
37 |
+
adequacy_score = prob_label_is_true.item()
|
38 |
+
if adequacy_score >= adequacy_threshold:
|
39 |
+
adequacy_scores[para_phrase] = adequacy_score
|
40 |
+
return adequacy_scores
|
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from styleformer import Styleformer
|
2 |
+
import torch
|
3 |
+
import warnings
|
4 |
+
|
5 |
+
warnings.filterwarnings("ignore")
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
def para1(source_sentences):
|
11 |
+
choices = "Active to passive",
|
12 |
+
sf = Styleformer(style=2)
|
13 |
+
sentance1 = list(source_sentences.split("."))
|
14 |
+
output_sentance = []
|
15 |
+
for source_sentence in sentance1:
|
16 |
+
target_sentence = sf.transfer(source_sentence)
|
17 |
+
if target_sentence is not None:
|
18 |
+
output_sentance.append(target_sentence)
|
19 |
+
#print(target_sentence)
|
20 |
+
else:
|
21 |
+
output_sentance.append(target_sentence)
|
22 |
+
#print(target_sentence)
|
23 |
+
output_sentance.append(target_sentence)
|
24 |
+
res = [i for i in output_sentance if i is not None]
|
25 |
+
#print(output_sentance)
|
26 |
+
#print(res)
|
27 |
+
final = ""
|
28 |
+
for value in res:
|
29 |
+
joint_value = "".join(value)
|
30 |
+
if final == "":
|
31 |
+
final += joint_value
|
32 |
+
else:
|
33 |
+
final = f"{final}.{joint_value}"
|
34 |
+
final = final.replace("..", ".")
|
35 |
+
new_output = final.replace('Active to passive:', "")
|
36 |
+
#print(final)
|
37 |
+
return new_output
|
38 |
+
|
39 |
+
iface = gr.Interface(fn=para1, inputs=[gr.inputs.Textbox(lines=5)], outputs="text")
|
40 |
+
if __name__ == "__main__":
|
41 |
+
iface.launch(debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
gradio
|
4 |
+
sentencepiece
|
5 |
+
python-Levenshtein
|
6 |
+
fuzzywuzzy
|
styleformer.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class Styleformer():
|
2 |
+
|
3 |
+
def __init__(
|
4 |
+
self,
|
5 |
+
style=0,
|
6 |
+
ctf_model_tag="jaimin/Informal_to_formal",
|
7 |
+
ftc_model_tag="jaimin/formal_to_informal",
|
8 |
+
atp_model_tag="jaimin/Active_to_passive",
|
9 |
+
pta_model_tag="jaimin/Passive_to_active",
|
10 |
+
adequacy_model_tag="jaimin/parrot_adequacy_model",
|
11 |
+
):
|
12 |
+
from transformers import AutoTokenizer
|
13 |
+
from transformers import AutoModelForSeq2SeqLM
|
14 |
+
from adequacy import Adequacy
|
15 |
+
|
16 |
+
self.style = style
|
17 |
+
self.adequacy = adequacy_model_tag and Adequacy(model_tag=adequacy_model_tag, use_auth_token="access")
|
18 |
+
self.model_loaded = False
|
19 |
+
|
20 |
+
if self.style == 0:
|
21 |
+
self.ctf_tokenizer = AutoTokenizer.from_pretrained(ctf_model_tag, use_auth_token="access")
|
22 |
+
self.ctf_model = AutoModelForSeq2SeqLM.from_pretrained(ctf_model_tag, use_auth_token="access")
|
23 |
+
print("Casual to Formal model loaded...")
|
24 |
+
self.model_loaded = True
|
25 |
+
elif self.style == 1:
|
26 |
+
self.ftc_tokenizer = AutoTokenizer.from_pretrained(ftc_model_tag, use_auth_token="access")
|
27 |
+
self.ftc_model = AutoModelForSeq2SeqLM.from_pretrained(ftc_model_tag, use_auth_token="access")
|
28 |
+
print("Formal to Casual model loaded...")
|
29 |
+
self.model_loaded = True
|
30 |
+
elif self.style == 2:
|
31 |
+
self.atp_tokenizer = AutoTokenizer.from_pretrained(atp_model_tag,use_auth_token="access")
|
32 |
+
self.atp_model = AutoModelForSeq2SeqLM.from_pretrained(atp_model_tag,use_auth_token="access")
|
33 |
+
print("Active to Passive model loaded...")
|
34 |
+
self.model_loaded = True
|
35 |
+
elif self.style == 3:
|
36 |
+
self.pta_tokenizer = AutoTokenizer.from_pretrained(pta_model_tag,use_auth_token="access")
|
37 |
+
self.pta_model = AutoModelForSeq2SeqLM.from_pretrained(pta_model_tag,use_auth_token="access")
|
38 |
+
print("Passive to Active model loaded...")
|
39 |
+
self.model_loaded = True
|
40 |
+
else:
|
41 |
+
print("Only CTF, FTC, ATP and PTA are supported in the pre-release...stay tuned")
|
42 |
+
|
43 |
+
def transfer(self, input_sentence, inference_on=-1, quality_filter=0.95, max_candidates=5):
|
44 |
+
if self.model_loaded:
|
45 |
+
if inference_on == -1:
|
46 |
+
device = "cpu"
|
47 |
+
elif inference_on >= 0 and inference_on < 999:
|
48 |
+
device = "cpu:" + str(inference_on)
|
49 |
+
else:
|
50 |
+
device = "cpu"
|
51 |
+
print("Onnx + Quantisation is not supported in the pre-release...stay tuned.")
|
52 |
+
|
53 |
+
if self.style == 0:
|
54 |
+
output_sentence = self._casual_to_formal(input_sentence, device, quality_filter, max_candidates)
|
55 |
+
return output_sentence
|
56 |
+
elif self.style == 1:
|
57 |
+
output_sentence = self._formal_to_casual(input_sentence, device, quality_filter, max_candidates)
|
58 |
+
return output_sentence
|
59 |
+
elif self.style == 2:
|
60 |
+
output_sentence = self._active_to_passive(input_sentence, device)
|
61 |
+
return output_sentence
|
62 |
+
elif self.style == 3:
|
63 |
+
output_sentence = self._passive_to_active(input_sentence, device)
|
64 |
+
return output_sentence
|
65 |
+
|
66 |
+
else:
|
67 |
+
print("Models aren't loaded for this style, please use the right style during init")
|
68 |
+
|
69 |
+
def _formal_to_casual(self, input_sentence, device, quality_filter, max_candidates):
|
70 |
+
ftc_prefix = "transfer Formal to Casual: "
|
71 |
+
src_sentence = input_sentence
|
72 |
+
input_sentence = ftc_prefix + input_sentence
|
73 |
+
input_ids = self.ftc_tokenizer.encode(input_sentence, return_tensors='pt')
|
74 |
+
self.ftc_model = self.ftc_model.to(device)
|
75 |
+
input_ids = input_ids.to(device)
|
76 |
+
|
77 |
+
preds = self.ftc_model.generate(
|
78 |
+
input_ids,
|
79 |
+
do_sample=True,
|
80 |
+
max_length=32,
|
81 |
+
top_k=50,
|
82 |
+
top_p=0.95,
|
83 |
+
early_stopping=True,
|
84 |
+
num_return_sequences=max_candidates)
|
85 |
+
|
86 |
+
gen_sentences = set()
|
87 |
+
for pred in preds:
|
88 |
+
gen_sentences.add(self.ftc_tokenizer.decode(pred, skip_special_tokens=True).strip())
|
89 |
+
|
90 |
+
adequacy_scored_phrases = self.adequacy.score(src_sentence, list(gen_sentences), quality_filter, device)
|
91 |
+
ranked_sentences = sorted(adequacy_scored_phrases.items(), key=lambda x: x[1], reverse=True)
|
92 |
+
if len(ranked_sentences) > 0:
|
93 |
+
return ranked_sentences[0][0]
|
94 |
+
else:
|
95 |
+
return None
|
96 |
+
|
97 |
+
def _casual_to_formal(self, input_sentence, device, quality_filter, max_candidates):
|
98 |
+
ctf_prefix = "transfer Casual to Formal: "
|
99 |
+
src_sentence = input_sentence
|
100 |
+
input_sentence = ctf_prefix + input_sentence
|
101 |
+
input_ids = self.ctf_tokenizer.encode(input_sentence, return_tensors='pt')
|
102 |
+
self.ctf_model = self.ctf_model.to(device)
|
103 |
+
input_ids = input_ids.to(device)
|
104 |
+
|
105 |
+
preds = self.ctf_model.generate(
|
106 |
+
input_ids,
|
107 |
+
do_sample=True,
|
108 |
+
max_length=32,
|
109 |
+
top_k=50,
|
110 |
+
top_p=0.95,
|
111 |
+
early_stopping=True,
|
112 |
+
num_return_sequences=max_candidates)
|
113 |
+
|
114 |
+
gen_sentences = set()
|
115 |
+
for pred in preds:
|
116 |
+
gen_sentences.add(self.ctf_tokenizer.decode(pred, skip_special_tokens=True).strip())
|
117 |
+
|
118 |
+
adequacy_scored_phrases = self.adequacy.score(src_sentence, list(gen_sentences), quality_filter, device)
|
119 |
+
ranked_sentences = sorted(adequacy_scored_phrases.items(), key=lambda x: x[1], reverse=True)
|
120 |
+
if len(ranked_sentences) > 0:
|
121 |
+
return ranked_sentences[0][0]
|
122 |
+
else:
|
123 |
+
return None
|
124 |
+
|
125 |
+
def _active_to_passive(self, input_sentence, device):
|
126 |
+
atp_prefix = "transfer Active to Passive: "
|
127 |
+
src_sentence = input_sentence
|
128 |
+
input_sentence = atp_prefix + input_sentence
|
129 |
+
input_ids = self.atp_tokenizer.encode(input_sentence, return_tensors='pt')
|
130 |
+
self.atp_model = self.atp_model.to(device)
|
131 |
+
input_ids = input_ids.to(device)
|
132 |
+
|
133 |
+
preds = self.atp_model.generate(
|
134 |
+
input_ids,
|
135 |
+
do_sample=True,
|
136 |
+
max_length=32,
|
137 |
+
top_k=50,
|
138 |
+
top_p=0.95,
|
139 |
+
early_stopping=True,
|
140 |
+
num_return_sequences=1)
|
141 |
+
|
142 |
+
return self.atp_tokenizer.decode(preds[0], skip_special_tokens=True).strip()
|
143 |
+
|
144 |
+
def _passive_to_active(self, input_sentence, device):
|
145 |
+
pta_prefix = "transfer Passive to Active: "
|
146 |
+
src_sentence = input_sentence
|
147 |
+
input_sentence = pta_prefix + input_sentence
|
148 |
+
input_ids = self.pta_tokenizer.encode(input_sentence, return_tensors='pt')
|
149 |
+
self.pta_model = self.pta_model.to(device)
|
150 |
+
input_ids = input_ids.to(device)
|
151 |
+
|
152 |
+
preds = self.pta_model.generate(
|
153 |
+
input_ids,
|
154 |
+
do_sample=True,
|
155 |
+
max_length=32,
|
156 |
+
top_k=50,
|
157 |
+
top_p=0.95,
|
158 |
+
early_stopping=True,
|
159 |
+
num_return_sequences=1)
|
160 |
+
|
161 |
+
return self.pta_tokenizer.decode(preds[0], skip_special_tokens=True).strip()
|