Update app.py
Browse files
app.py
CHANGED
@@ -54,11 +54,13 @@ def predict(image):
|
|
54 |
for i in range(len(model_all.names)):
|
55 |
count = class_counts_all[i]
|
56 |
avg_conf = np.mean(class_confidences_all[i]) if class_confidences_all[i] else 0
|
57 |
-
|
|
|
58 |
|
59 |
# Add number plate detection results from the second model
|
60 |
-
|
61 |
-
|
|
|
62 |
|
63 |
return im, output
|
64 |
|
@@ -75,4 +77,4 @@ iface = gr.Interface(
|
|
75 |
)
|
76 |
|
77 |
# Launch the interface
|
78 |
-
iface.launch(share=
|
|
|
54 |
for i in range(len(model_all.names)):
|
55 |
count = class_counts_all[i]
|
56 |
avg_conf = np.mean(class_confidences_all[i]) if class_confidences_all[i] else 0
|
57 |
+
if count > 0: # Only print classes with detections
|
58 |
+
output += f"{model_all.names[i]}: {count} detections (Avg. Confidence: {avg_conf:.2f})\n"
|
59 |
|
60 |
# Add number plate detection results from the second model
|
61 |
+
if np_count > 0: # Only print number plate detection if there are any
|
62 |
+
avg_np_conf = np.mean(np_confidences) if np_confidences else 0
|
63 |
+
output += f"Number Plates: {np_count} detections (Avg. Confidence: {avg_np_conf:.2f})\n"
|
64 |
|
65 |
return im, output
|
66 |
|
|
|
77 |
)
|
78 |
|
79 |
# Launch the interface
|
80 |
+
iface.launch(share=True)
|