Spaces:
Running
Running
Upload 5 files
Browse files- .gitattributes +1 -0
- DejaVuSans.ttf +3 -0
- README.md +25 -6
- app.py +180 -0
- gitattributes +36 -0
- requirements.txt +7 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
DejaVuSans.ttf filter=lfs diff=lfs merge=lfs -text
|
DejaVuSans.ttf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7da195a74c55bef988d0d48f9508bd5d849425c1770dba5d7bfc6ce9ed848954
|
3 |
+
size 757076
|
README.md
CHANGED
@@ -1,13 +1,32 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.31.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
short_description: mfilterit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: YouTube Transcript & Summary
|
3 |
+
emoji: 🎧
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.31.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
+
# YouTube Transcript, Translation & Summary (Whisper + Hugging Face)
|
13 |
+
|
14 |
+
This Space extracts audio from a YouTube video, detects language, transcribes speech using OpenAI Whisper, translates to English if needed, and provides a summary.
|
15 |
+
|
16 |
+
**How to use:**
|
17 |
+
1. Paste a YouTube URL in the box.
|
18 |
+
2. Click "Process".
|
19 |
+
3. View detected language, full transcript, English translation, and summary.
|
20 |
+
|
21 |
+
**Tech stack:** Gradio, Hugging Face Transformers, OpenAI Whisper, Facebook BART, yt-dlp
|
22 |
+
|
23 |
+
---
|
24 |
+
|
25 |
+
## Requirements
|
26 |
+
- All dependencies listed in requirements.txt.
|
27 |
+
- yt-dlp is included as a pip dependency.
|
28 |
+
|
29 |
+
---
|
30 |
+
|
31 |
+
## Author
|
32 |
+
Built for quick demo and prototyping by Jagan (template by ChatGPT).
|
app.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import openai
|
3 |
+
from langdetect import detect
|
4 |
+
from transformers import pipeline
|
5 |
+
from keybert import KeyBERT
|
6 |
+
from fpdf import FPDF
|
7 |
+
import os
|
8 |
+
import re
|
9 |
+
import unicodedata
|
10 |
+
|
11 |
+
# --- SETUP ---
|
12 |
+
openai.api_key = os.getenv("OPENAI_API_KEY") # Set in HF Space Secrets
|
13 |
+
|
14 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
15 |
+
kw_model = KeyBERT()
|
16 |
+
FONT_PATH = "DejaVuSans.ttf" # Must be uploaded to Space root!
|
17 |
+
|
18 |
+
BRANDS = [
|
19 |
+
"Apple", "Google", "Microsoft", "Amazon", "Coca-Cola", "Pepsi", "Samsung", "Nike", "ICICI",
|
20 |
+
"Meta", "Facebook", "Instagram", "YouTube", "Netflix", "Reliance", "Tata", "Airtel", "Jio",
|
21 |
+
"Motilal", "Wipro", "Paytm", "Zomato", "Swiggy", "OLA", "Uber"
|
22 |
+
]
|
23 |
+
|
24 |
+
def extract_brands(text):
|
25 |
+
found = [brand for brand in BRANDS if brand.lower() in text.lower()]
|
26 |
+
return found if found else ["None detected"]
|
27 |
+
|
28 |
+
def extract_topics(text, top_n=5):
|
29 |
+
keywords = kw_model.extract_keywords(text, top_n=top_n, stop_words='english')
|
30 |
+
topics = [kw for kw, score in keywords]
|
31 |
+
return topics if topics else ["None extracted"]
|
32 |
+
|
33 |
+
def make_bullets(summary):
|
34 |
+
sentences = summary.replace("\n", " ").split('. ')
|
35 |
+
bullets = [f"- {s.strip()}" for s in sentences if s.strip()]
|
36 |
+
return "\n".join(bullets)
|
37 |
+
|
38 |
+
def make_str(val):
|
39 |
+
try:
|
40 |
+
if val is None:
|
41 |
+
return ""
|
42 |
+
if isinstance(val, (bool, int, float)):
|
43 |
+
return str(val)
|
44 |
+
if isinstance(val, list):
|
45 |
+
return "\n".join([make_str(v) for v in val])
|
46 |
+
if isinstance(val, dict):
|
47 |
+
return str(val)
|
48 |
+
return str(val)
|
49 |
+
except Exception:
|
50 |
+
return ""
|
51 |
+
|
52 |
+
def very_safe_multicell(pdf, text, w=0, h=8, maxlen=50):
|
53 |
+
"""Force-break lines so no line/word exceeds maxlen chars, avoiding fpdf2 crash."""
|
54 |
+
if not isinstance(text, str):
|
55 |
+
text = str(text)
|
56 |
+
# Remove unprintable chars (e.g. control characters)
|
57 |
+
text = "".join(ch for ch in text if unicodedata.category(ch)[0] != "C")
|
58 |
+
# Step 1: break long words
|
59 |
+
def break_long_words(t):
|
60 |
+
lines = []
|
61 |
+
for paragraph in t.split('\n'):
|
62 |
+
for word in paragraph.split(' '):
|
63 |
+
while len(word) > maxlen:
|
64 |
+
lines.append(word[:maxlen])
|
65 |
+
word = word[maxlen:]
|
66 |
+
lines.append(word)
|
67 |
+
lines.append('')
|
68 |
+
return '\n'.join(lines)
|
69 |
+
text = break_long_words(text)
|
70 |
+
# Step 2: ensure no line is too long (wrap at maxlen)
|
71 |
+
wrapped = []
|
72 |
+
for line in text.splitlines():
|
73 |
+
while len(line) > maxlen:
|
74 |
+
wrapped.append(line[:maxlen])
|
75 |
+
line = line[maxlen:]
|
76 |
+
wrapped.append(line)
|
77 |
+
safe_text = '\n'.join(wrapped)
|
78 |
+
pdf.multi_cell(w, h, safe_text)
|
79 |
+
|
80 |
+
def create_pdf_report(language, transcript_en, brands, topics, key_takeaways):
|
81 |
+
pdf = FPDF()
|
82 |
+
pdf.set_auto_page_break(auto=True, margin=10)
|
83 |
+
pdf.set_margins(left=10, top=10, right=10)
|
84 |
+
pdf.add_font("DejaVu", style="", fname=FONT_PATH, uni=True)
|
85 |
+
pdf.add_font("DejaVu", style="B", fname=FONT_PATH, uni=True)
|
86 |
+
pdf.add_page()
|
87 |
+
pdf.set_font("DejaVu", "B", 16)
|
88 |
+
pdf.cell(0, 10, "Audio Transcript & Analysis Report", ln=True, align="C")
|
89 |
+
pdf.set_font("DejaVu", size=12)
|
90 |
+
pdf.ln(5)
|
91 |
+
pdf.cell(0, 10, f"Detected Language: {language}", ln=True)
|
92 |
+
pdf.ln(5)
|
93 |
+
pdf.set_font("DejaVu", "B", 12)
|
94 |
+
pdf.cell(0, 10, "English Transcript:", ln=True)
|
95 |
+
pdf.set_font("DejaVu", size=12)
|
96 |
+
very_safe_multicell(pdf, transcript_en or "", maxlen=50)
|
97 |
+
pdf.ln(3)
|
98 |
+
pdf.set_font("DejaVu", "B", 12)
|
99 |
+
pdf.cell(0, 10, "Brands Detected:", ln=True)
|
100 |
+
pdf.set_font("DejaVu", size=12)
|
101 |
+
very_safe_multicell(pdf, ", ".join(brands), maxlen=50)
|
102 |
+
pdf.set_font("DejaVu", "B", 12)
|
103 |
+
pdf.cell(0, 10, "Key Topics:", ln=True)
|
104 |
+
pdf.set_font("DejaVu", size=12)
|
105 |
+
very_safe_multicell(pdf, ", ".join(topics), maxlen=50)
|
106 |
+
pdf.set_font("DejaVu", "B", 12)
|
107 |
+
pdf.cell(0, 10, "Summary (Bulleted):", ln=True)
|
108 |
+
pdf.set_font("DejaVu", size=10)
|
109 |
+
for takeaway in key_takeaways.split('\n'):
|
110 |
+
very_safe_multicell(pdf, takeaway, maxlen=50)
|
111 |
+
pdf_file = "/tmp/analysis_report.pdf"
|
112 |
+
pdf.output(pdf_file)
|
113 |
+
return pdf_file
|
114 |
+
|
115 |
+
def process_audio(audio_path):
|
116 |
+
if not audio_path or not isinstance(audio_path, str):
|
117 |
+
return ("No audio file provided.", "", "", "", "", "", None)
|
118 |
+
try:
|
119 |
+
with open(audio_path, "rb") as audio_file:
|
120 |
+
transcript = openai.audio.transcriptions.create(
|
121 |
+
model="whisper-1",
|
122 |
+
file=audio_file,
|
123 |
+
response_format="text"
|
124 |
+
)
|
125 |
+
transcript = make_str(transcript).strip()
|
126 |
+
except Exception as e:
|
127 |
+
return (f"Error in transcription: {e}", "", "", "", "", "", None)
|
128 |
+
try:
|
129 |
+
detected_lang = detect(transcript)
|
130 |
+
lang_text = {'en': 'English', 'hi': 'Hindi', 'ta': 'Tamil'}.get(detected_lang, detected_lang)
|
131 |
+
except Exception:
|
132 |
+
lang_text = "unknown"
|
133 |
+
transcript_en = transcript
|
134 |
+
if detected_lang != "en":
|
135 |
+
try:
|
136 |
+
with open(audio_path, "rb") as audio_file:
|
137 |
+
transcript_en = openai.audio.translations.create(
|
138 |
+
model="whisper-1",
|
139 |
+
file=audio_file,
|
140 |
+
response_format="text"
|
141 |
+
)
|
142 |
+
transcript_en = make_str(transcript_en).strip()
|
143 |
+
except Exception as e:
|
144 |
+
transcript_en = f"Error translating: {e}"
|
145 |
+
try:
|
146 |
+
summary_obj = summarizer(transcript_en, max_length=100, min_length=30, do_sample=False)
|
147 |
+
summary = summary_obj[0]["summary_text"] if isinstance(summary_obj, list) and "summary_text" in summary_obj[0] else make_str(summary_obj)
|
148 |
+
except Exception as e:
|
149 |
+
summary = f"Error summarizing: {e}"
|
150 |
+
brands = extract_brands(transcript_en)
|
151 |
+
topics = extract_topics(transcript_en)
|
152 |
+
key_takeaways = make_bullets(summary)
|
153 |
+
pdf_file = create_pdf_report(lang_text, transcript_en, brands, topics, key_takeaways)
|
154 |
+
return (
|
155 |
+
lang_text,
|
156 |
+
transcript,
|
157 |
+
transcript_en,
|
158 |
+
", ".join(brands),
|
159 |
+
", ".join(topics),
|
160 |
+
key_takeaways,
|
161 |
+
pdf_file
|
162 |
+
)
|
163 |
+
|
164 |
+
iface = gr.Interface(
|
165 |
+
fn=process_audio,
|
166 |
+
inputs=gr.Audio(type="filepath", label="Upload MP3/WAV Audio"),
|
167 |
+
outputs=[
|
168 |
+
gr.Textbox(label="Detected Language"),
|
169 |
+
gr.Textbox(label="Original Transcript"),
|
170 |
+
gr.Textbox(label="English Transcript (if translated)"),
|
171 |
+
gr.Textbox(label="Brands Detected"),
|
172 |
+
gr.Textbox(label="Key Topics"),
|
173 |
+
gr.Textbox(label="Bulleted Key Takeaways"),
|
174 |
+
gr.File(label="Download PDF Report")
|
175 |
+
],
|
176 |
+
title="Audio Transcript, Brand & Topic Analysis (OpenAI Whisper + Unicode PDF Download)",
|
177 |
+
description="Upload your audio file (MP3/WAV). Get transcript, summary, brand & topic detection, and download PDF. Unicode (Indian language/emoji) supported."
|
178 |
+
)
|
179 |
+
|
180 |
+
iface.launch()
|
gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
DejaVuSans.ttf filter=lfs diff=lfs merge=lfs -text
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
gradio>=4.44.1
|
3 |
+
langdetect
|
4 |
+
transformers
|
5 |
+
torch
|
6 |
+
fpdf2
|
7 |
+
keybert
|