jaisun2004 commited on
Commit
2e174b1
·
verified ·
1 Parent(s): 422e80b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -10
app.py CHANGED
@@ -1,19 +1,15 @@
1
  import gradio as gr
2
- import os
3
  from transformers import pipeline
4
  from langdetect import detect
5
 
6
- def process_audio(audio_file):
7
  try:
8
- # audio_file is a tuple (file_obj, file_path)
9
- audio_path = audio_file if isinstance(audio_file, str) else audio_file.name
10
-
11
- # Transcribe
12
  asr = pipeline("automatic-speech-recognition", model="openai/whisper-large")
13
  result = asr(audio_path)
14
  transcript = result["text"]
15
  except Exception as e:
16
- return "Error in transcription: " + str(e), "", "", ""
17
  try:
18
  detected_lang = detect(transcript)
19
  except Exception:
@@ -38,10 +34,20 @@ def process_audio(audio_file):
38
  summary_text = summary[0]["summary_text"]
39
  except Exception as e:
40
  summary_text = f"Error summarizing: {e}"
41
- # Optionally, remove uploaded file if it's saved on disk
42
  return lang_text, transcript, transcript_en, summary_text
43
 
44
  with gr.Blocks() as demo:
45
- gr.Markdown("## Audio Transcript, Translation & Summary (Powered by Whisper + Hugging Face)")
46
  audio_input = gr.Audio(source="upload", type="filepath", label="Upload MP3/WAV Audio")
47
- btn = gr
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
2
  from transformers import pipeline
3
  from langdetect import detect
4
 
5
+ def process_audio(audio_path):
6
  try:
7
+ # Transcription
 
 
 
8
  asr = pipeline("automatic-speech-recognition", model="openai/whisper-large")
9
  result = asr(audio_path)
10
  transcript = result["text"]
11
  except Exception as e:
12
+ return f"Error in transcription: {e}", "", "", ""
13
  try:
14
  detected_lang = detect(transcript)
15
  except Exception:
 
34
  summary_text = summary[0]["summary_text"]
35
  except Exception as e:
36
  summary_text = f"Error summarizing: {e}"
 
37
  return lang_text, transcript, transcript_en, summary_text
38
 
39
  with gr.Blocks() as demo:
40
+ gr.Markdown("## Audio Transcript, Translation & Summary (Whisper + Hugging Face)")
41
  audio_input = gr.Audio(source="upload", type="filepath", label="Upload MP3/WAV Audio")
42
+ btn = gr.Button("Process")
43
+ lang_out = gr.Textbox(label="Detected Language")
44
+ transcript_out = gr.Textbox(label="Original Transcript")
45
+ transcript_en_out = gr.Textbox(label="English Transcript (if translated)")
46
+ summary_out = gr.Textbox(label="Summary")
47
+ btn.click(
48
+ process_audio,
49
+ inputs=[audio_input],
50
+ outputs=[lang_out, transcript_out, transcript_en_out, summary_out]
51
+ )
52
+
53
+ demo.launch()