Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,25 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
from langdetect import detect
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
asr = pipeline("automatic-speech-recognition", model="openai/whisper-small")
|
6 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
7 |
|
8 |
def process_audio(audio_path):
|
9 |
-
# Accept only valid, non-empty file path (string)
|
10 |
if not audio_path or not isinstance(audio_path, str):
|
11 |
return "No audio file provided.", "", "", ""
|
12 |
try:
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
except Exception as e:
|
16 |
return f"Error in transcription: {e}", "", "", ""
|
17 |
try:
|
@@ -23,8 +31,14 @@ def process_audio(audio_path):
|
|
23 |
transcript_en = transcript
|
24 |
if detected_lang != "en":
|
25 |
try:
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
except Exception as e:
|
29 |
transcript_en = f"Error translating: {e}"
|
30 |
try:
|
@@ -43,8 +57,8 @@ iface = gr.Interface(
|
|
43 |
gr.Textbox(label="English Transcript (if translated)"),
|
44 |
gr.Textbox(label="Summary"),
|
45 |
],
|
46 |
-
title="Audio Transcript, Translation & Summary",
|
47 |
-
description="Upload your audio file (MP3/WAV). This app transcribes, detects language, translates to English if needed, and summarizes."
|
48 |
)
|
49 |
|
50 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import openai
|
3 |
from langdetect import detect
|
4 |
+
from transformers import pipeline
|
5 |
+
import os
|
6 |
+
|
7 |
+
openai.api_key = os.getenv("OPENAI_API_KEY") # Set this as a secret in your Space settings
|
8 |
|
|
|
9 |
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
10 |
|
11 |
def process_audio(audio_path):
|
|
|
12 |
if not audio_path or not isinstance(audio_path, str):
|
13 |
return "No audio file provided.", "", "", ""
|
14 |
try:
|
15 |
+
# Send audio to OpenAI Whisper API
|
16 |
+
with open(audio_path, "rb") as audio_file:
|
17 |
+
transcript_response = openai.audio.transcriptions.create(
|
18 |
+
model="whisper-1",
|
19 |
+
file=audio_file,
|
20 |
+
response_format="text"
|
21 |
+
)
|
22 |
+
transcript = transcript_response
|
23 |
except Exception as e:
|
24 |
return f"Error in transcription: {e}", "", "", ""
|
25 |
try:
|
|
|
31 |
transcript_en = transcript
|
32 |
if detected_lang != "en":
|
33 |
try:
|
34 |
+
# Re-send with task=translate for translation to English
|
35 |
+
with open(audio_path, "rb") as audio_file:
|
36 |
+
translation_response = openai.audio.translations.create(
|
37 |
+
model="whisper-1",
|
38 |
+
file=audio_file,
|
39 |
+
response_format="text"
|
40 |
+
)
|
41 |
+
transcript_en = translation_response
|
42 |
except Exception as e:
|
43 |
transcript_en = f"Error translating: {e}"
|
44 |
try:
|
|
|
57 |
gr.Textbox(label="English Transcript (if translated)"),
|
58 |
gr.Textbox(label="Summary"),
|
59 |
],
|
60 |
+
title="Audio Transcript, Translation & Summary (via OpenAI Whisper API)",
|
61 |
+
description="Upload your audio file (MP3/WAV). This app transcribes via OpenAI Whisper API, detects language, translates to English if needed, and summarizes."
|
62 |
)
|
63 |
|
64 |
iface.launch()
|