import gradio as gr import os import subprocess from transformers import pipeline from langdetect import detect def download_audio(youtube_url): output_file = "audio.mp3" # Remove old file if exists if os.path.exists(output_file): os.remove(output_file) cmd = [ "yt-dlp", "-x", "--audio-format", "mp3", "-o", output_file, youtube_url ] subprocess.run(cmd, check=True) return output_file def process_youtube(youtube_url): try: audio_path = download_audio(youtube_url) except Exception as e: return "Error downloading audio: " + str(e), "", "", "" try: asr = pipeline("automatic-speech-recognition", model="openai/whisper-large") result = asr(audio_path) transcript = result["text"] except Exception as e: return "Error in transcription: " + str(e), "", "", "" try: detected_lang = detect(transcript) except Exception: detected_lang = "unknown" lang_map = {'en': 'English', 'hi': 'Hindi', 'ta': 'Tamil'} lang_text = lang_map.get(detected_lang, detected_lang) transcript_en = transcript if detected_lang != "en": try: asr_translate = pipeline( "automatic-speech-recognition", model="openai/whisper-large", task="translate" ) result_translate = asr_translate(audio_path) transcript_en = result_translate["text"] except Exception as e: transcript_en = f"Error translating: {e}" try: summarizer = pipeline("summarization", model="facebook/bart-large-cnn") summary = summarizer(transcript_en, max_length=100, min_length=30, do_sample=False) summary_text = summary[0]["summary_text"] except Exception as e: summary_text = f"Error summarizing: {e}" if os.path.exists(audio_path): os.remove(audio_path) return lang_text, transcript, transcript_en, summary_text with gr.Blocks() as demo: gr.Markdown("## YouTube Transcript, Translation & Summary (Powered by Whisper + Hugging Face)") url_input = gr.Textbox(label="YouTube URL") btn = gr.Button("Process") lang_out = gr.Textbox(label="Detected Language") transcript_out = gr.Textbox(label="Original Transcript") transcript_en_out = gr.Textbox(label="English Transcript (if translated)") summary_out = gr.Textbox(label="Summary") btn.click( process_youtube, inputs=[url_input], outputs=[lang_out, transcript_out, transcript_en_out, summary_out] ) demo.launch()