Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import plotly.graph_objects as go
|
3 |
from transformers import pipeline
|
@@ -56,7 +57,7 @@ if uploaded_file:
|
|
56 |
emotion_scores = emotion_model(raw_transcript)
|
57 |
|
58 |
# Layout with Tabs
|
59 |
-
tab1, tab2, tab3 = st.tabs(["π Transcript", "π Summary", "π¬ Emotions"])
|
60 |
|
61 |
with tab1:
|
62 |
st.subheader("π Speaker-Simulated Transcript")
|
@@ -67,7 +68,21 @@ if uploaded_file:
|
|
67 |
st.write(summary[0]["summary_text"])
|
68 |
|
69 |
with tab3:
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
for emo in emotion_scores[0]:
|
72 |
st.write(f"{emo['label']}: {round(emo['score']*100, 2)}%")
|
73 |
|
@@ -124,28 +139,3 @@ if uploaded_file:
|
|
124 |
finally:
|
125 |
if os.path.exists(audio_path):
|
126 |
os.remove(audio_path)
|
127 |
-
|
128 |
-
# --- Post-processing UI Layout ---
|
129 |
-
if 'diarized_transcript' in locals() and 'final_output' in locals() and 'emotion_scores' in locals():
|
130 |
-
tab1, tab2, tab3, tab4 = st.tabs(["π Transcript", "π Summary", "π¬ Emotions", "π Trends"])
|
131 |
-
|
132 |
-
with tab1:
|
133 |
-
st.subheader("π Transcript")
|
134 |
-
st.markdown(diarized_transcript, unsafe_allow_html=True)
|
135 |
-
|
136 |
-
with tab2:
|
137 |
-
st.subheader("π Contextual Summary")
|
138 |
-
st.write(final_output)
|
139 |
-
|
140 |
-
with tab3:
|
141 |
-
st.subheader("π¬ Emotional Insights (Overall)")
|
142 |
-
for emo in emotion_scores[0]:
|
143 |
-
st.write(f"{emo['label']}: {round(emo['score']*100, 2)}%")
|
144 |
-
|
145 |
-
with tab4:
|
146 |
-
st.subheader("π Emotional Trends Over Time")
|
147 |
-
fig = go.Figure()
|
148 |
-
fig.add_trace(go.Scatter(x=session_dates, y=anxiety_scores, mode='lines+markers', name='Anxiety'))
|
149 |
-
fig.add_trace(go.Scatter(x=session_dates, y=sadness_scores, mode='lines+markers', name='Sadness'))
|
150 |
-
fig.update_layout(title='Emotional Trends', xaxis_title='Date', yaxis_title='Score (%)')
|
151 |
-
st.plotly_chart(fig)
|
|
|
1 |
+
|
2 |
import streamlit as st
|
3 |
import plotly.graph_objects as go
|
4 |
from transformers import pipeline
|
|
|
57 |
emotion_scores = emotion_model(raw_transcript)
|
58 |
|
59 |
# Layout with Tabs
|
60 |
+
tab1, tab2, tab3 = tab1, tab2, tab3, tab4 = st.tabs(["π Transcript", "π Summary", "π¬ Emotions", "π Trends"])
|
61 |
|
62 |
with tab1:
|
63 |
st.subheader("π Speaker-Simulated Transcript")
|
|
|
68 |
st.write(summary[0]["summary_text"])
|
69 |
|
70 |
with tab3:
|
71 |
+
|
72 |
+
with tab4:
|
73 |
+
st.subheader("π Emotional Trends Over Time")
|
74 |
+
|
75 |
+
session_dates = ["2024-04-01", "2024-04-08", "2024-04-15", "2024-04-22"]
|
76 |
+
anxiety_scores = [70, 65, 55, 40]
|
77 |
+
sadness_scores = [30, 20, 25, 15]
|
78 |
+
|
79 |
+
fig = go.Figure()
|
80 |
+
fig.add_trace(go.Scatter(x=session_dates, y=anxiety_scores, mode='lines+markers', name='Anxiety'))
|
81 |
+
fig.add_trace(go.Scatter(x=session_dates, y=sadness_scores, mode='lines+markers', name='Sadness'))
|
82 |
+
fig.update_layout(title='Emotional Trends', xaxis_title='Date', yaxis_title='Score (%)')
|
83 |
+
st.plotly_chart(fig)
|
84 |
+
|
85 |
+
st.subheader("π¬ Emotional Insights (Overall)")
|
86 |
for emo in emotion_scores[0]:
|
87 |
st.write(f"{emo['label']}: {round(emo['score']*100, 2)}%")
|
88 |
|
|
|
139 |
finally:
|
140 |
if os.path.exists(audio_path):
|
141 |
os.remove(audio_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|