jaisun2004 commited on
Commit
db865fa
·
verified ·
1 Parent(s): d91b2b1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+ from pydub import AudioSegment
4
+ import os
5
+
6
+ st.title("🧠 Atma.ai – Mental Health Session Summarizer")
7
+
8
+ uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "m4a"])
9
+
10
+ if uploaded_file:
11
+ st.audio(uploaded_file)
12
+
13
+ # Save the uploaded file
14
+ audio_path = "temp_audio.wav"
15
+ audio = AudioSegment.from_file(uploaded_file)
16
+ audio = audio.set_channels(1).set_frame_rate(16000)
17
+ audio.export(audio_path, format="wav")
18
+
19
+ st.write("✅ Audio converted. Starting transcription...")
20
+
21
+ st.spinner("Transcribing with Whisper...")
22
+ asr = pipeline("automatic-speech-recognition", model="openai/whisper-small")
23
+ result = asr(audio_path)
24
+ transcript = result["text"]
25
+
26
+ st.subheader("Transcript")
27
+ st.write(transcript)
28
+
29
+ st.subheader("Summary")
30
+ summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
31
+ summary = summarizer(transcript, max_length=200, min_length=40, do_sample=False)
32
+ st.write(summary[0]["summary_text"])
33
+
34
+ os.remove(audio_path) # clean up temp file