import streamlit as st from transformers import pipeline from pydub import AudioSegment import os st.title("🧠 Atma.ai – Mental Health Session Summarizer") uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "m4a"]) if uploaded_file: st.audio(uploaded_file) # Save the uploaded file audio_path = "temp_audio.wav" audio = AudioSegment.from_file(uploaded_file) audio = audio.set_channels(1).set_frame_rate(16000) audio.export(audio_path, format="wav") st.write("✅ Audio converted. Starting transcription...") st.spinner("Transcribing with Whisper...") asr = pipeline("automatic-speech-recognition", model="openai/whisper-small") result = asr(audio_path) transcript = result["text"] st.subheader("Transcript") st.write(transcript) st.subheader("Summary") summarizer = pipeline("summarization", model="facebook/bart-large-cnn") summary = summarizer(transcript, max_length=200, min_length=40, do_sample=False) st.write(summary[0]["summary_text"]) os.remove(audio_path) # clean up temp file