jaleesahmed commited on
Commit
64a2aa9
·
1 Parent(s): 749af93
Files changed (1) hide show
  1. app.py +36 -16
app.py CHANGED
@@ -1,22 +1,42 @@
1
  import gradio as gr
 
 
 
 
 
 
2
 
3
- title = "Employee Experience"
4
 
5
- data_desc = gr.Interface.load(
6
- "spaces/jaleesahmed/model-development",
7
- title=None,
8
- examples=[],
9
- description="Data Description!",
10
- )
 
 
 
11
 
12
- data_corr = gr.Interface.load(
13
- "spaces/jaleesahmed/correlation-and-visualization",
14
- title=None,
15
- examples=[],
16
- description="Data correlation and pattern visualization!",
17
- )
18
 
19
- demo = gr.TabbedInterface([data_desc, data_corr], ["Data Description", "Data-Correlation"])
 
 
 
 
 
 
 
 
 
20
 
21
- if __name__ == "__main__":
22
- demo.launch()
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import pandas as pd
3
+ from sklearn.preprocessing import LabelEncoder
4
+ from sklearn.feature_selection import mutual_info_classif
5
+ from sklearn.feature_selection import chi2
6
+ from sklearn.linear_model import LinearRegression
7
+ import numpy as np
8
 
 
9
 
10
+ def update(name):
11
+ df = pd.read_csv('emp_experience_data.csv')
12
+ pd.options.display.max_columns = 25
13
+ data_encoded = df.copy(deep=True)
14
+ categorical_column = ['Attrition', 'Gender', 'BusinessTravel', 'Education', 'EmployeeExperience', 'EmployeeFeedbackSentiments', 'Designation',
15
+ 'SalarySatisfaction', 'HealthBenefitsSatisfaction', 'UHGDiscountProgramUsage', 'HealthConscious', 'CareerPathSatisfaction', 'Region']
16
+ label_encoding = LabelEncoder()
17
+ for col in categorical_column:
18
+ data_encoded[col] = label_encoding.fit_transform(data_encoded[col])
19
 
20
+ data_selected = data_encoded[['EmployeeExperience', 'HealthBenefitsSatisfaction', 'SalarySatisfaction', 'Designation', 'HealthConscious',
21
+ 'EmployeeFeedbackSentiments', 'Education', 'Gender', 'HoursOfTrainingAttendedLastYear', 'InternalJobMovement', 'Attrition']]
 
 
 
 
22
 
23
+ input_data = data_selected.drop(['Attrition'], axis=1)
24
+ target_data = data_selected[['Attrition']]
25
+ input_data = data_selected[0:100]
26
+ validation_data = data_selected[100:198]
27
+ validation_input_data = validation_data.drop(['Attrition'], axis=1)
28
+ validation_target_data = validation_data[['Attrition']]
29
+ reg = LinearRegression().fit(validation_input_data, validation_target_data)
30
+ prediction_value = reg.predict(np.array([[2,2,1,3,1,2,0,1,40,1]]))
31
+ print(prediction_value)
32
+ return f"Prediction : , {prediction_value}!"
33
 
34
+ with gr.Blocks() as demo:
35
+ gr.Markdown("Start typing below and then click **Run** to see the output.")
36
+ with gr.Row():
37
+ inp = gr.Textbox(placeholder="Enter Employee Experience Data")
38
+ out = gr.Textbox()
39
+ btn = gr.Button("Run")
40
+ btn.click(fn=update, inputs=inp, outputs=out)
41
+
42
+ demo.launch()