import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # 加载 Qwen3-0.6B 模型和 tokenizer model_name = "Qwen/Qwen3-0.6B" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, # 半精度减少显存占用 device_map="auto", # 自动选择 GPU trust_remote_code=True # 信任远程代码(Qwen 需要) ) def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens=100) return tokenizer.decode(outputs[0], skip_special_tokens=True) # 创建 Gradio 界面 demo = gr.Interface( fn=generate_text, inputs=gr.Textbox(lines=3, placeholder="输入你的问题..."), outputs=gr.Textbox(label="Qwen3-0.6B 的回答"), title="Qwen3-0.6B 演示 (Free GPU)", ) demo.launch()