Spaces:
Running
Running
update
Browse files- src/streamlit_app.py +493 -90
src/streamlit_app.py
CHANGED
@@ -2,9 +2,35 @@ import altair as alt
|
|
2 |
import pandas as pd
|
3 |
import streamlit_vertical_slider as svs
|
4 |
import torch
|
5 |
-
from streamlit_vertical_slider import vertical_slider
|
6 |
-
|
7 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
st.title("Number Token Loss - Demo")
|
10 |
|
@@ -15,109 +41,486 @@ to form a valid probability distribution, visualizes it, and computes the corres
|
|
15 |
Cross Entropy, NTL-MSE, and NTL-WAS losses.
|
16 |
""")
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
)
|
45 |
|
46 |
-
#
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
gt_numeric = None
|
54 |
else:
|
55 |
-
|
56 |
-
|
57 |
|
58 |
-
# Visualize the input distribution with highlighted ground truth bar
|
59 |
st.markdown("#### Input Probability Distribution")
|
60 |
-
df_dist = pd.DataFrame({"token": options, "probability":
|
|
|
61 |
chart = (
|
62 |
-
alt.Chart(df_dist)
|
63 |
-
|
64 |
-
.encode(
|
65 |
-
x=alt.X("token:N", title="Token"),
|
66 |
y=alt.Y("probability:Q", title="Probability", scale=alt.Scale(domain=[0, 1])),
|
67 |
-
color=alt.
|
68 |
-
|
69 |
-
alt.value("green"), # Highlight ground truth token
|
70 |
-
alt.value("steelblue"), # Other tokens
|
71 |
-
),
|
72 |
-
)
|
73 |
-
.properties(height=300)
|
74 |
)
|
75 |
st.altair_chart(chart, use_container_width=True)
|
76 |
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
# Compute NTL-MSE loss
|
81 |
-
if gt_numeric is None:
|
82 |
-
ntl_mse_loss = torch.tensor(0.0)
|
83 |
-
else:
|
84 |
-
numeric_probs = probs[:10]
|
85 |
-
values = torch.arange(0, 10, dtype=torch.float32)
|
86 |
-
pred_value = torch.sum(numeric_probs * values)
|
87 |
-
ntl_mse_loss = (pred_value - float(gt_numeric)) ** 2
|
88 |
-
|
89 |
-
# Compute NTL-WAS loss
|
90 |
-
if gt_numeric is None:
|
91 |
-
ntl_was_loss = torch.tensor(0.0)
|
92 |
-
else:
|
93 |
-
numeric_probs = probs[:10]
|
94 |
-
values = torch.arange(0, 10, dtype=torch.float32)
|
95 |
-
abs_diff = torch.abs(values - float(gt_numeric))
|
96 |
-
ntl_was_loss = torch.sum(numeric_probs * abs_diff)
|
97 |
|
98 |
-
# Convert losses to Python floats and round to 3 decimals
|
99 |
ce_val = round(ce_loss.item(), 3)
|
100 |
-
mse_val = round(ntl_mse_loss.item(), 3)
|
101 |
-
was_val = round(ntl_was_loss.item(), 3)
|
102 |
|
103 |
-
# Display numeric values of the losses
|
104 |
-
st.subheader("Loss Values")
|
105 |
-
st.write(f"**Cross Entropy:** {ce_val:.3f}")
|
106 |
-
st.write(f"**NTL-MSE:** {mse_val:.3f}")
|
107 |
-
st.write(f"**NTL-WAS:** {was_val:.3f}")
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
).set_index("Loss")
|
117 |
-
st.bar_chart(loss_df)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import pandas as pd
|
3 |
import streamlit_vertical_slider as svs
|
4 |
import torch
|
5 |
+
# from streamlit_vertical_slider import vertical_slider # Not directly used, svs.vertical_slider is
|
|
|
6 |
import streamlit as st
|
7 |
+
import time
|
8 |
+
import plotly.graph_objects as go # Add Plotly import
|
9 |
+
|
10 |
+
# Define options globally as it's used in initialization and UI
|
11 |
+
options = [str(i) for i in range(10)] + ["Text"]
|
12 |
+
|
13 |
+
# --- Session State Initialization ---
|
14 |
+
# Ensure all session state variables are initialized before first use, especially by widgets.
|
15 |
+
if 'running_demo' not in st.session_state:
|
16 |
+
st.session_state.running_demo = False
|
17 |
+
if 'demo_step' not in st.session_state:
|
18 |
+
st.session_state.demo_step = 0
|
19 |
+
if 'last_update_time' not in st.session_state:
|
20 |
+
st.session_state.last_update_time = 0
|
21 |
+
if 'loss_container' not in st.session_state:
|
22 |
+
st.session_state.loss_container = None
|
23 |
+
if 'previous_chart_html' not in st.session_state:
|
24 |
+
st.session_state.previous_chart_html = ""
|
25 |
+
|
26 |
+
# Initialize states for sliders and ground_truth selector
|
27 |
+
# Using len(options) to correctly size for 0-9 + "Text"
|
28 |
+
for i in range(len(options)):
|
29 |
+
if f"slider_{i}" not in st.session_state:
|
30 |
+
st.session_state[f"slider_{i}"] = 1.0 / len(options)
|
31 |
+
if 'ground_truth' not in st.session_state:
|
32 |
+
st.session_state['ground_truth'] = options[0] # Default to "0"
|
33 |
+
|
34 |
|
35 |
st.title("Number Token Loss - Demo")
|
36 |
|
|
|
41 |
Cross Entropy, NTL-MSE, and NTL-WAS losses.
|
42 |
""")
|
43 |
|
44 |
+
# --- Scenario Definitions ---
|
45 |
+
scenarios = [
|
46 |
+
{
|
47 |
+
"name": "Probability mass at 0",
|
48 |
+
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
49 |
+
"ground_truth": "0",
|
50 |
+
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"name": "Probability mass at 0",
|
54 |
+
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
55 |
+
"ground_truth": "1",
|
56 |
+
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"name": "Probability mass at 0",
|
60 |
+
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
61 |
+
"ground_truth": "2",
|
62 |
+
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"name": "Probability mass at 0",
|
66 |
+
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
67 |
+
"ground_truth": "3",
|
68 |
+
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"name": "Probability mass at 0",
|
72 |
+
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
73 |
+
"ground_truth": "4",
|
74 |
+
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"name": "Probability mass at 0",
|
78 |
+
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
79 |
+
"ground_truth": "5",
|
80 |
+
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"name": "Probability mass at 0",
|
84 |
+
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
85 |
+
"ground_truth": "6",
|
86 |
+
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"name": "Probability mass at 0",
|
90 |
+
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
91 |
+
"ground_truth": "7",
|
92 |
+
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"name": "Probability mass at 0",
|
96 |
+
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
97 |
+
"ground_truth": "8",
|
98 |
+
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"name": "Probability mass at 0",
|
102 |
+
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
103 |
+
"ground_truth": "9",
|
104 |
+
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
105 |
+
},
|
106 |
+
|
107 |
+
|
108 |
+
{
|
109 |
+
"name": "Probability mass around 5",
|
110 |
+
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
111 |
+
"ground_truth": "0",
|
112 |
+
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"name": "Probability mass around 5",
|
116 |
+
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
117 |
+
"ground_truth": "1",
|
118 |
+
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"name": "Probability mass around 5",
|
122 |
+
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
123 |
+
"ground_truth": "2",
|
124 |
+
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"name": "Probability mass around 5",
|
128 |
+
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
129 |
+
"ground_truth": "3",
|
130 |
+
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"name": "Probability mass around 5",
|
134 |
+
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
135 |
+
"ground_truth": "4",
|
136 |
+
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"name": "Probability mass around ground truth (5)",
|
140 |
+
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
141 |
+
"ground_truth": "5",
|
142 |
+
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"name": "Probability mass around 5",
|
146 |
+
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
147 |
+
"ground_truth": "6",
|
148 |
+
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"name": "Probability mass around 5",
|
152 |
+
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
153 |
+
"ground_truth": "7",
|
154 |
+
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"name": "Probability mass around 5",
|
158 |
+
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
159 |
+
"ground_truth": "8",
|
160 |
+
"explanation": "Cross Entropy is high, NTL is higher but still penalizes less than CE because distribution knows it's a number."
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"name": "Probability mass around 5",
|
164 |
+
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
165 |
+
"ground_truth": "9",
|
166 |
+
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
167 |
+
},
|
168 |
+
|
169 |
+
{
|
170 |
+
"name": "Probability mass concentrated on 5",
|
171 |
+
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
172 |
+
"ground_truth": "0",
|
173 |
+
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"name": "Probability mass concentrated on 5",
|
177 |
+
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
178 |
+
"ground_truth": "1",
|
179 |
+
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"name": "Probability mass concentrated on 5",
|
183 |
+
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
184 |
+
"ground_truth": "2",
|
185 |
+
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"name": "Probability mass concentrated on 5",
|
189 |
+
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
190 |
+
"ground_truth": "3",
|
191 |
+
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"name": "Probability mass concentrated on 5",
|
195 |
+
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
196 |
+
"ground_truth": "4",
|
197 |
+
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"name": "Probability mass concentrated on 5",
|
201 |
+
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
202 |
+
"ground_truth": "5",
|
203 |
+
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"name": "Probability mass concentrated on 5",
|
207 |
+
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
208 |
+
"ground_truth": "6",
|
209 |
+
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"name": "Probability mass concentrated on 5",
|
213 |
+
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
214 |
+
"ground_truth": "7",
|
215 |
+
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"name": "Probability mass concentrated on 5",
|
219 |
+
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
220 |
+
"ground_truth": "8",
|
221 |
+
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"name": "Probability mass concentrated on 5",
|
225 |
+
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
226 |
+
"ground_truth": "9",
|
227 |
+
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
228 |
+
},
|
229 |
+
|
230 |
+
|
231 |
+
{
|
232 |
+
"name": "Probability mass concentrated on 1",
|
233 |
+
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
234 |
+
"ground_truth": "0",
|
235 |
+
"explanation": "Both losses are low because the prediction is correct."
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"name": "Probability mass concentrated on 1",
|
239 |
+
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
240 |
+
"ground_truth": "1",
|
241 |
+
"explanation": "Both losses are low because the prediction is correct."
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"name": "Probability mass concentrated on 1",
|
245 |
+
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
246 |
+
"ground_truth": "2",
|
247 |
+
"explanation": "Both losses are low because the prediction is correct."
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"name": "Probability mass concentrated on 1",
|
251 |
+
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
252 |
+
"ground_truth": "3",
|
253 |
+
"explanation": "Both losses are low because the prediction is correct."
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"name": "Probability mass concentrated on 1",
|
257 |
+
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
258 |
+
"ground_truth": "4",
|
259 |
+
"explanation": "Both losses are low because the prediction is correct."
|
260 |
+
},
|
261 |
+
{
|
262 |
+
"name": "Probability mass concentrated on 1",
|
263 |
+
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
264 |
+
"ground_truth": "5",
|
265 |
+
"explanation": "Both losses are low because the prediction is correct."
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"name": "Probability mass concentrated on 1",
|
269 |
+
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
270 |
+
"ground_truth": "6",
|
271 |
+
"explanation": "Both losses are low because the prediction is correct."
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"name": "Probability mass concentrated on 1",
|
275 |
+
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
276 |
+
"ground_truth": "7",
|
277 |
+
"explanation": "Both losses are low because the prediction is correct."
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"name": "Probability mass concentrated on 1",
|
281 |
+
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
282 |
+
"ground_truth": "8",
|
283 |
+
"explanation": "Both losses are low because the prediction is correct."
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"name": "Probability mass concentrated on 1",
|
287 |
+
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
288 |
+
"ground_truth": "9",
|
289 |
+
"explanation": "Both losses are low because the prediction is correct."
|
290 |
+
},
|
291 |
+
|
292 |
+
|
293 |
+
{
|
294 |
+
"name": "Almost correct (1 vs 2)",
|
295 |
+
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
296 |
+
"ground_truth": "0",
|
297 |
+
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"name": "Almost correct (1 vs 2)",
|
301 |
+
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
302 |
+
"ground_truth": "1",
|
303 |
+
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"name": "Almost correct (1 vs 2)",
|
307 |
+
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
308 |
+
"ground_truth": "2",
|
309 |
+
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"name": "Almost correct (1 vs 2)",
|
313 |
+
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
314 |
+
"ground_truth": "3",
|
315 |
+
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
316 |
+
}
|
317 |
+
]
|
318 |
+
|
319 |
+
# --- Helper Functions ---
|
320 |
+
def apply_scenario(step_idx):
|
321 |
+
scenario = scenarios[step_idx]
|
322 |
+
# These assignments modify session state. They must be done *before* the widgets
|
323 |
+
# are rendered in the script run that should display these new values.
|
324 |
+
for i, val in enumerate(scenario["values"]):
|
325 |
+
st.session_state[f"slider_{i}"] = val
|
326 |
+
st.session_state['ground_truth'] = scenario["ground_truth"]
|
327 |
+
|
328 |
+
def start_demo():
|
329 |
+
st.session_state.running_demo = True
|
330 |
+
st.session_state.demo_step = 0
|
331 |
+
st.session_state.last_update_time = time.time()
|
332 |
+
apply_scenario(0) # Apply the first scenario's state
|
333 |
+
# The button click that calls start_demo() will itself cause a rerun.
|
334 |
+
|
335 |
+
def stop_demo():
|
336 |
+
st.session_state.running_demo = False
|
337 |
+
|
338 |
+
# --- Demo State Advancement Logic ---
|
339 |
+
# This block handles advancing the demo. If it advances, it updates session state
|
340 |
+
# and then reruns. This ensures widgets are drawn with the new state in the next run.
|
341 |
+
if st.session_state.running_demo:
|
342 |
+
current_time = time.time()
|
343 |
+
if current_time - st.session_state.last_update_time > 3.0: # 3 seconds per scenario
|
344 |
+
next_step = (st.session_state.demo_step + 1) % len(scenarios)
|
345 |
+
st.session_state.demo_step = next_step
|
346 |
+
apply_scenario(next_step) # Update session state for the new scenario
|
347 |
+
st.session_state.last_update_time = time.time() # Reset timer
|
348 |
+
st.rerun() # Crucial: Rerun to reflect changes in widgets and charts
|
349 |
+
|
350 |
+
# --- UI Rendering ---
|
351 |
+
# This section renders the main UI. It executes after any potential rerun from the block above.
|
352 |
+
|
353 |
+
if st.session_state.running_demo:
|
354 |
+
st.info(f"Showing scenario {st.session_state.demo_step + 1}/{len(scenarios)}: {scenarios[st.session_state.demo_step]['name']}")
|
355 |
+
st.markdown(f"**Explanation:** {scenarios[st.session_state.demo_step]['explanation']}")
|
356 |
+
if st.button("Stop Demo"):
|
357 |
+
stop_demo()
|
358 |
+
st.rerun()
|
359 |
+
else: # Not st.session_state.running_demo
|
360 |
+
if st.button("Start Automated Demo"):
|
361 |
+
start_demo() # This calls apply_scenario(0)
|
362 |
+
st.rerun() # Rerun to enter demo mode and draw scenario 0 correctly
|
363 |
+
|
364 |
+
# Sliders and Ground Truth Selector
|
365 |
+
# These widgets will read their initial values from st.session_state.
|
366 |
+
# User interactions will update st.session_state directly due to their keys.
|
367 |
+
if not st.session_state.running_demo:
|
368 |
+
st.markdown("#### Predicted Token Probabilities")
|
369 |
+
cols = st.columns(len(options))
|
370 |
+
for i, col in enumerate(cols):
|
371 |
+
label = options[i] # Use token name directly for label
|
372 |
+
with col:
|
373 |
+
svs.vertical_slider(
|
374 |
+
label=label, min_value=0.0, max_value=1.0, step=0.01, height=50,
|
375 |
+
key=f"slider_{i}", # This key links the widget to st.session_state[f"slider_{i}"]
|
376 |
+
slider_color="green", track_color="lightgray", thumb_color="black"
|
377 |
+
)
|
378 |
+
|
379 |
+
# Ground truth selectbox
|
380 |
+
st.selectbox(
|
381 |
+
"Ground Truth Token", options=options,
|
382 |
+
index=options.index(st.session_state['ground_truth']), # Display value from session state
|
383 |
+
key='ground_truth' # Links widget to st.session_state['ground_truth']
|
384 |
)
|
385 |
|
386 |
+
# Placeholder for charts and loss calculations that will be updated
|
387 |
+
# This section always reads the current st.session_state to generate its content.
|
388 |
+
|
389 |
+
current_prob_values_from_state = [st.session_state.get(f"slider_{j}", 1.0/len(options)) for j in range(len(options))]
|
390 |
+
total_from_state = sum(current_prob_values_from_state)
|
391 |
+
probs_for_charts = (
|
392 |
+
torch.ones(len(options)) / len(options)
|
393 |
+
if total_from_state == 0
|
394 |
+
else torch.tensor([v / total_from_state for v in current_prob_values_from_state])
|
395 |
+
)
|
396 |
|
397 |
+
gt_choice_for_charts = st.session_state.get('ground_truth', options[0])
|
398 |
+
if gt_choice_for_charts == "Text":
|
399 |
+
gt_index_for_charts = 10 # Assuming "Text" is the 11th item (index 10)
|
400 |
+
gt_numeric_for_charts = None
|
|
|
401 |
else:
|
402 |
+
gt_index_for_charts = int(gt_choice_for_charts)
|
403 |
+
gt_numeric_for_charts = gt_index_for_charts
|
404 |
|
|
|
405 |
st.markdown("#### Input Probability Distribution")
|
406 |
+
df_dist = pd.DataFrame({"token": options, "probability": probs_for_charts.numpy()})
|
407 |
+
df_dist["type"] = ["Ground Truth" if token == gt_choice_for_charts else "Prediction" for token in options]
|
408 |
chart = (
|
409 |
+
alt.Chart(df_dist).mark_bar().encode(
|
410 |
+
x=alt.X("token:N", title="Token", sort=options), # Ensure consistent sort order
|
|
|
|
|
411 |
y=alt.Y("probability:Q", title="Probability", scale=alt.Scale(domain=[0, 1])),
|
412 |
+
color=alt.Color("type:N", scale=alt.Scale(domain=["Ground Truth", "Prediction"], range=["green", "steelblue"]), legend=alt.Legend(title="Token Type"))
|
413 |
+
).properties(height=300)
|
|
|
|
|
|
|
|
|
|
|
414 |
)
|
415 |
st.altair_chart(chart, use_container_width=True)
|
416 |
|
417 |
+
ce_loss = -torch.log(torch.clamp(probs_for_charts[gt_index_for_charts], min=1e-9))
|
418 |
+
if gt_numeric_for_charts is None: # Text token
|
419 |
+
ntl_mse_loss = torch.tensor(float('nan')) # MSE not applicable for text
|
420 |
+
ntl_was_loss = torch.tensor(float('nan')) # WAS not applicable for text
|
421 |
+
else: # Numeric token
|
422 |
+
numeric_probs_for_loss = probs_for_charts[:10] # Probabilities for 0-9
|
423 |
+
# Ensure numeric_probs_for_loss sums to 1 for NTL calculations if it's a subset
|
424 |
+
numeric_probs_sum = torch.sum(numeric_probs_for_loss)
|
425 |
+
if numeric_probs_sum > 1e-6 : # Avoid division by zero
|
426 |
+
normalized_numeric_probs = numeric_probs_for_loss / numeric_probs_sum
|
427 |
+
else:
|
428 |
+
normalized_numeric_probs = torch.zeros_like(numeric_probs_for_loss)
|
429 |
+
|
430 |
+
|
431 |
+
loss_values_tensor = torch.arange(0, 10, dtype=torch.float32)
|
432 |
+
|
433 |
+
# Use normalized probabilities for NTL if only considering numeric tokens
|
434 |
+
if gt_choice_for_charts != "Text" and torch.sum(probs_for_charts[:10]) > 1e-6 :
|
435 |
+
pred_value = torch.sum( (probs_for_charts[:10]/torch.sum(probs_for_charts[:10])) * loss_values_tensor)
|
436 |
+
elif gt_choice_for_charts != "Text": # if sum is zero, pred_value is ill-defined or 0
|
437 |
+
pred_value = torch.tensor(0.0)
|
438 |
+
else: # Should not happen if gt_numeric_for_charts is not None
|
439 |
+
pred_value = torch.tensor(float('nan'))
|
440 |
+
|
441 |
+
|
442 |
+
if not torch.isnan(pred_value):
|
443 |
+
ntl_mse_loss = (pred_value - float(gt_numeric_for_charts)) ** 2
|
444 |
+
abs_diff = torch.abs(loss_values_tensor - float(gt_numeric_for_charts))
|
445 |
+
if gt_choice_for_charts != "Text" and torch.sum(probs_for_charts[:10]) > 1e-6:
|
446 |
+
ntl_was_loss = torch.sum((probs_for_charts[:10]/torch.sum(probs_for_charts[:10])) * abs_diff)
|
447 |
+
elif gt_choice_for_charts != "Text":
|
448 |
+
ntl_was_loss = torch.tensor(0.0) # Or some other default if all numeric probs are zero
|
449 |
+
else:
|
450 |
+
ntl_was_loss = torch.tensor(float('nan'))
|
451 |
+
else:
|
452 |
+
ntl_mse_loss = torch.tensor(float('nan'))
|
453 |
+
ntl_was_loss = torch.tensor(float('nan'))
|
454 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
|
|
|
456 |
ce_val = round(ce_loss.item(), 3)
|
457 |
+
mse_val = round(ntl_mse_loss.item(), 3) if not torch.isnan(ntl_mse_loss) else "N/A"
|
458 |
+
was_val = round(ntl_was_loss.item(), 3) if not torch.isnan(ntl_was_loss) else "N/A"
|
459 |
|
|
|
|
|
|
|
|
|
|
|
460 |
|
461 |
+
loss_data = {"Loss": ["Cross Entropy"], "Value": [ce_val]}
|
462 |
+
if was_val != "N/A":
|
463 |
+
loss_data["Loss"].append("NTL-WAS")
|
464 |
+
loss_data["Value"].append(was_val)
|
465 |
+
if mse_val != "N/A":
|
466 |
+
loss_data["Loss"].append("NTL-MSE")
|
467 |
+
loss_data["Value"].append(mse_val)
|
|
|
|
|
468 |
|
469 |
+
loss_df = pd.DataFrame(loss_data)
|
470 |
+
|
471 |
+
# ============== Chart Display ==============
|
472 |
+
# Create a single chart for loss visualization
|
473 |
+
st.subheader("Loss Comparison")
|
474 |
+
|
475 |
+
# Create an Altair chart that will look good and redraw cleanly
|
476 |
+
chart = alt.Chart(loss_df).mark_bar().encode(
|
477 |
+
x=alt.X('Loss:N', sort=loss_df["Loss"].tolist()),
|
478 |
+
y=alt.Y('Value:Q', scale=alt.Scale(domain=[0, max(loss_df["Value"].max() * 1.2, 20 if st.session_state.running_demo else 0.5)])),
|
479 |
+
color=alt.Color('Loss:N', scale=alt.Scale(
|
480 |
+
domain=['Cross Entropy', 'NTL-WAS', 'NTL-MSE'],
|
481 |
+
range=['steelblue', 'red', 'forestgreen']
|
482 |
+
)),
|
483 |
+
tooltip=['Loss', 'Value']
|
484 |
+
).properties(
|
485 |
+
height=300
|
486 |
)
|
487 |
+
|
488 |
+
# Add value labels on top of bars
|
489 |
+
text = chart.mark_text(
|
490 |
+
align='center',
|
491 |
+
baseline='bottom',
|
492 |
+
dy=-5,
|
493 |
+
fontSize=14
|
494 |
+
).encode(
|
495 |
+
text=alt.Text('Value:Q', format='.3f')
|
496 |
+
)
|
497 |
+
|
498 |
+
# Combine chart and text
|
499 |
+
final_chart = (chart + text)
|
500 |
+
|
501 |
+
# Display chart with the full container width
|
502 |
+
st.altair_chart(final_chart, use_container_width=True)
|
503 |
+
|
504 |
+
# --- Polling Rerun for Demo Mode ---
|
505 |
+
# If the demo is running and we haven't just advanced (which would have caused a rerun),
|
506 |
+
# then we do a short sleep and rerun to keep the polling loop alive.
|
507 |
+
if st.session_state.running_demo:
|
508 |
+
# This check is implicitly: if we are here and demo is running, it means
|
509 |
+
# the time-based advance condition was NOT met in the block at the top.
|
510 |
+
time.sleep(0.1) # Adjusted from 0.2 to 0.5 (or try 1.0)
|
511 |
+
st.rerun()
|
512 |
+
|
513 |
+
# Add explanation of the demonstration
|
514 |
+
st.markdown("""
|
515 |
+
### What Does This Demo Show?
|
516 |
+
|
517 |
+
- **Cross Entropy Loss**: Only cares if the prediction is exactly right or wrong - it doesn't consider how "close" a numerical prediction is.
|
518 |
+
- **Number Token Loss (NTL)**: Considers numerical proximity - predicting "7" when the true value is "8" is better than predicting "2".
|
519 |
+
""")
|
520 |
+
|
521 |
+
# References / resources section with links (common to both modes)
|
522 |
+
st.markdown("### Resources")
|
523 |
+
st.markdown("""
|
524 |
+
- [Paper: Number Token Loss (ArXiv)](https://arxiv.org/abs/2411.02083)
|
525 |
+
- [GitHub: Number Token Loss](https://github.com/tum-ai/number-token-loss)
|
526 |
+
""")
|