Spaces:
Running
Running
wip
Browse files- src/scenarios.py +60 -0
- src/streamlit_app.py +337 -384
src/scenarios.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
# (1) A one-hot moving from token 0 to token 10 (“Text”)
|
4 |
+
dirac = [
|
5 |
+
{
|
6 |
+
"name": f"Dirac: all mass on token {i}",
|
7 |
+
"values": [1.0 if j == i else 0.0 for j in range(11)],
|
8 |
+
"ground_truth": "4",
|
9 |
+
"explanation": "A Dirac distribution: all probability on a single token.",
|
10 |
+
}
|
11 |
+
for i in range(11)
|
12 |
+
]
|
13 |
+
|
14 |
+
|
15 |
+
# (2) A Gaussian with peak_mass=0.6 at center, remaining mass=0.4 spread by a Gaussian ---
|
16 |
+
def make_gauss_values(center, n=11, sigma=1.5, peak_mass=0.6):
|
17 |
+
xs = np.arange(n)
|
18 |
+
# unnormalized Gaussian
|
19 |
+
kernel = np.exp(-0.5 * ((xs - center) / sigma) ** 2)
|
20 |
+
# zero out the center, re-normalize the *other* weights to sum to 1
|
21 |
+
others = kernel.copy()
|
22 |
+
others[center] = 0.0
|
23 |
+
others /= others.sum()
|
24 |
+
# allocate 0.6 to the center, 0.4 to the rest
|
25 |
+
vals = others * (1.0 - peak_mass)
|
26 |
+
vals[center] = peak_mass
|
27 |
+
return vals.tolist()
|
28 |
+
|
29 |
+
|
30 |
+
gauss = [
|
31 |
+
{
|
32 |
+
"name": f"Gaussian: center at token {c}",
|
33 |
+
"values": make_gauss_values(c),
|
34 |
+
"ground_truth": "4",
|
35 |
+
"explanation": "Gaussian-style: 0.6 mass at the highlighted token, 0.4 spread smoothly to its neighbors.",
|
36 |
+
}
|
37 |
+
for c in range(11)
|
38 |
+
]
|
39 |
+
|
40 |
+
|
41 |
+
# (3) Bimodal: two spikes of 0.5 mass each, symmetrically offset from the GT=4 ---
|
42 |
+
def make_bimodal_values(offset, n=11, gt=4):
|
43 |
+
# clamp to [0,n-1]
|
44 |
+
left = max(0, gt - offset)
|
45 |
+
right = min(n - 1, gt + offset)
|
46 |
+
vals = [0.0] * n
|
47 |
+
vals[left] = 0.5
|
48 |
+
vals[right] = 0.5
|
49 |
+
return vals
|
50 |
+
|
51 |
+
|
52 |
+
bimodal = [
|
53 |
+
{
|
54 |
+
"name": f"Bimodal: peaks at tokens {max(0, 4 - d)} & {min(10, 4 + d)}",
|
55 |
+
"values": make_bimodal_values(d),
|
56 |
+
"ground_truth": "4",
|
57 |
+
"explanation": "Two-point (bimodal) distribution: equal 0.5 mass on each peak, which move ±offset from the ground truth.",
|
58 |
+
}
|
59 |
+
for d in range(11)
|
60 |
+
]
|
src/streamlit_app.py
CHANGED
@@ -1,392 +1,163 @@
|
|
|
|
|
|
1 |
import altair as alt
|
|
|
2 |
import pandas as pd
|
|
|
3 |
import streamlit_vertical_slider as svs
|
4 |
import torch
|
5 |
-
|
6 |
-
import
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Define options globally as it's used in initialization and UI
|
11 |
options = [str(i) for i in range(10)] + ["Text"]
|
12 |
|
13 |
# --- Session State Initialization ---
|
14 |
# Ensure all session state variables are initialized before first use, especially by widgets.
|
15 |
-
if
|
16 |
st.session_state.running_demo = False
|
17 |
-
if
|
18 |
st.session_state.demo_step = 0
|
19 |
-
if
|
20 |
st.session_state.last_update_time = 0
|
21 |
-
if
|
22 |
st.session_state.loss_container = None
|
23 |
-
if
|
24 |
st.session_state.previous_chart_html = ""
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
# Initialize states for sliders and ground_truth selector
|
27 |
# Using len(options) to correctly size for 0-9 + "Text"
|
28 |
for i in range(len(options)):
|
29 |
if f"slider_{i}" not in st.session_state:
|
30 |
st.session_state[f"slider_{i}"] = 1.0 / len(options)
|
31 |
-
if
|
32 |
-
st.session_state[
|
33 |
|
34 |
|
35 |
st.title("Number Token Loss - Demo")
|
36 |
|
37 |
-
st.markdown(
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
# --- Scenario Definitions ---
|
45 |
-
scenarios = [
|
46 |
-
{
|
47 |
-
"name": "Probability mass at 0",
|
48 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
49 |
-
"ground_truth": "0",
|
50 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
51 |
-
},
|
52 |
-
{
|
53 |
-
"name": "Probability mass at 0",
|
54 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
55 |
-
"ground_truth": "1",
|
56 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"name": "Probability mass at 0",
|
60 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
61 |
-
"ground_truth": "2",
|
62 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
63 |
-
},
|
64 |
-
{
|
65 |
-
"name": "Probability mass at 0",
|
66 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
67 |
-
"ground_truth": "3",
|
68 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
69 |
-
},
|
70 |
-
{
|
71 |
-
"name": "Probability mass at 0",
|
72 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
73 |
-
"ground_truth": "4",
|
74 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
75 |
-
},
|
76 |
-
{
|
77 |
-
"name": "Probability mass at 0",
|
78 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
79 |
-
"ground_truth": "5",
|
80 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"name": "Probability mass at 0",
|
84 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
85 |
-
"ground_truth": "6",
|
86 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
87 |
-
},
|
88 |
-
{
|
89 |
-
"name": "Probability mass at 0",
|
90 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
91 |
-
"ground_truth": "7",
|
92 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
93 |
-
},
|
94 |
-
{
|
95 |
-
"name": "Probability mass at 0",
|
96 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
97 |
-
"ground_truth": "8",
|
98 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
99 |
-
},
|
100 |
-
{
|
101 |
-
"name": "Probability mass at 0",
|
102 |
-
"values": [0.3, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.0], # 11 values
|
103 |
-
"ground_truth": "9",
|
104 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
105 |
-
},
|
106 |
-
|
107 |
-
|
108 |
-
{
|
109 |
-
"name": "Probability mass around 5",
|
110 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
111 |
-
"ground_truth": "0",
|
112 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
113 |
-
},
|
114 |
-
{
|
115 |
-
"name": "Probability mass around 5",
|
116 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
117 |
-
"ground_truth": "1",
|
118 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
119 |
-
},
|
120 |
-
{
|
121 |
-
"name": "Probability mass around 5",
|
122 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
123 |
-
"ground_truth": "2",
|
124 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
125 |
-
},
|
126 |
-
{
|
127 |
-
"name": "Probability mass around 5",
|
128 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
129 |
-
"ground_truth": "3",
|
130 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
131 |
-
},
|
132 |
-
{
|
133 |
-
"name": "Probability mass around 5",
|
134 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
135 |
-
"ground_truth": "4",
|
136 |
-
"explanation": "Cross Entropy does not penalize if the prediction is far from the ground truth."
|
137 |
-
},
|
138 |
-
{
|
139 |
-
"name": "Probability mass around ground truth (5)",
|
140 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
141 |
-
"ground_truth": "5",
|
142 |
-
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
143 |
-
},
|
144 |
-
{
|
145 |
-
"name": "Probability mass around 5",
|
146 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
147 |
-
"ground_truth": "6",
|
148 |
-
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
149 |
-
},
|
150 |
-
{
|
151 |
-
"name": "Probability mass around 5",
|
152 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
153 |
-
"ground_truth": "7",
|
154 |
-
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
155 |
-
},
|
156 |
-
{
|
157 |
-
"name": "Probability mass around 5",
|
158 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
159 |
-
"ground_truth": "8",
|
160 |
-
"explanation": "Cross Entropy is high, NTL is higher but still penalizes less than CE because distribution knows it's a number."
|
161 |
-
},
|
162 |
-
{
|
163 |
-
"name": "Probability mass around 5",
|
164 |
-
"values": [0.05, 0.05, 0.05, 0.1, 0.2, 0.3, 0.15, 0.05, 0.03, 0.02, 0.0], # 11 values
|
165 |
-
"ground_truth": "9",
|
166 |
-
"explanation": "Cross Entropy is moderate, NTL is low because predictions are close to ground truth."
|
167 |
-
},
|
168 |
-
|
169 |
-
{
|
170 |
-
"name": "Probability mass concentrated on 5",
|
171 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
172 |
-
"ground_truth": "0",
|
173 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
174 |
-
},
|
175 |
-
{
|
176 |
-
"name": "Probability mass concentrated on 5",
|
177 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
178 |
-
"ground_truth": "1",
|
179 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
180 |
-
},
|
181 |
-
{
|
182 |
-
"name": "Probability mass concentrated on 5",
|
183 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
184 |
-
"ground_truth": "2",
|
185 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
186 |
-
},
|
187 |
-
{
|
188 |
-
"name": "Probability mass concentrated on 5",
|
189 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
190 |
-
"ground_truth": "3",
|
191 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
192 |
-
},
|
193 |
-
{
|
194 |
-
"name": "Probability mass concentrated on 5",
|
195 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
196 |
-
"ground_truth": "4",
|
197 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
198 |
-
},
|
199 |
-
{
|
200 |
-
"name": "Probability mass concentrated on 5",
|
201 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
202 |
-
"ground_truth": "5",
|
203 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
204 |
-
},
|
205 |
-
{
|
206 |
-
"name": "Probability mass concentrated on 5",
|
207 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
208 |
-
"ground_truth": "6",
|
209 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
210 |
-
},
|
211 |
-
{
|
212 |
-
"name": "Probability mass concentrated on 5",
|
213 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
214 |
-
"ground_truth": "7",
|
215 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
216 |
-
},
|
217 |
-
{
|
218 |
-
"name": "Probability mass concentrated on 5",
|
219 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
220 |
-
"ground_truth": "8",
|
221 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
222 |
-
},
|
223 |
-
{
|
224 |
-
"name": "Probability mass concentrated on 5",
|
225 |
-
"values": [0.05, 0.05, 0.05, 0.05, 0.05, 0.3, 0.2, 0.15, 0.05, 0.05, 0.0], # 11 values
|
226 |
-
"ground_truth": "9",
|
227 |
-
"explanation": "Both CE and NTL are high because the prediction is far from correct."
|
228 |
-
},
|
229 |
-
|
230 |
-
|
231 |
-
{
|
232 |
-
"name": "Probability mass concentrated on 1",
|
233 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
234 |
-
"ground_truth": "0",
|
235 |
-
"explanation": "Both losses are low because the prediction is correct."
|
236 |
-
},
|
237 |
-
{
|
238 |
-
"name": "Probability mass concentrated on 1",
|
239 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
240 |
-
"ground_truth": "1",
|
241 |
-
"explanation": "Both losses are low because the prediction is correct."
|
242 |
-
},
|
243 |
-
{
|
244 |
-
"name": "Probability mass concentrated on 1",
|
245 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
246 |
-
"ground_truth": "2",
|
247 |
-
"explanation": "Both losses are low because the prediction is correct."
|
248 |
-
},
|
249 |
-
{
|
250 |
-
"name": "Probability mass concentrated on 1",
|
251 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
252 |
-
"ground_truth": "3",
|
253 |
-
"explanation": "Both losses are low because the prediction is correct."
|
254 |
-
},
|
255 |
-
{
|
256 |
-
"name": "Probability mass concentrated on 1",
|
257 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
258 |
-
"ground_truth": "4",
|
259 |
-
"explanation": "Both losses are low because the prediction is correct."
|
260 |
-
},
|
261 |
-
{
|
262 |
-
"name": "Probability mass concentrated on 1",
|
263 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
264 |
-
"ground_truth": "5",
|
265 |
-
"explanation": "Both losses are low because the prediction is correct."
|
266 |
-
},
|
267 |
-
{
|
268 |
-
"name": "Probability mass concentrated on 1",
|
269 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
270 |
-
"ground_truth": "6",
|
271 |
-
"explanation": "Both losses are low because the prediction is correct."
|
272 |
-
},
|
273 |
-
{
|
274 |
-
"name": "Probability mass concentrated on 1",
|
275 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
276 |
-
"ground_truth": "7",
|
277 |
-
"explanation": "Both losses are low because the prediction is correct."
|
278 |
-
},
|
279 |
-
{
|
280 |
-
"name": "Probability mass concentrated on 1",
|
281 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
282 |
-
"ground_truth": "8",
|
283 |
-
"explanation": "Both losses are low because the prediction is correct."
|
284 |
-
},
|
285 |
-
{
|
286 |
-
"name": "Probability mass concentrated on 1",
|
287 |
-
"values": [0.05, 0.7, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.02, 0.02, 0.0], # 11 values
|
288 |
-
"ground_truth": "9",
|
289 |
-
"explanation": "Both losses are low because the prediction is correct."
|
290 |
-
},
|
291 |
-
|
292 |
-
|
293 |
-
{
|
294 |
-
"name": "Almost correct (1 vs 2)",
|
295 |
-
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
296 |
-
"ground_truth": "0",
|
297 |
-
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
298 |
-
},
|
299 |
-
{
|
300 |
-
"name": "Almost correct (1 vs 2)",
|
301 |
-
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
302 |
-
"ground_truth": "1",
|
303 |
-
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
304 |
-
},
|
305 |
-
{
|
306 |
-
"name": "Almost correct (1 vs 2)",
|
307 |
-
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
308 |
-
"ground_truth": "2",
|
309 |
-
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
310 |
-
},
|
311 |
-
{
|
312 |
-
"name": "Almost correct (1 vs 2)",
|
313 |
-
"values": [0.1, 0.1, 0.7, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # 11 values
|
314 |
-
"ground_truth": "3",
|
315 |
-
"explanation": "CE penalizes harshly, but NTL-WAS remains low because prediction is numerically close."
|
316 |
-
}
|
317 |
-
]
|
318 |
|
319 |
-
# --- Helper Functions ---
|
320 |
def apply_scenario(step_idx):
|
321 |
-
scenario =
|
322 |
-
# These assignments modify session state. They must be done *before* the widgets
|
323 |
-
# are rendered in the script run that should display these new values.
|
324 |
for i, val in enumerate(scenario["values"]):
|
325 |
st.session_state[f"slider_{i}"] = val
|
326 |
-
st.session_state['ground_truth'] = scenario["ground_truth"]
|
327 |
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
st.session_state.running_demo = True
|
330 |
st.session_state.demo_step = 0
|
331 |
st.session_state.last_update_time = time.time()
|
332 |
-
apply_scenario(0)
|
333 |
-
|
334 |
|
335 |
def stop_demo():
|
336 |
st.session_state.running_demo = False
|
337 |
|
|
|
338 |
# --- Demo State Advancement Logic ---
|
339 |
# This block handles advancing the demo. If it advances, it updates session state
|
340 |
# and then reruns. This ensures widgets are drawn with the new state in the next run.
|
341 |
if st.session_state.running_demo:
|
|
|
342 |
current_time = time.time()
|
343 |
-
if current_time - st.session_state.last_update_time >
|
344 |
-
next_step = (st.session_state.demo_step + 1) % len(
|
345 |
st.session_state.demo_step = next_step
|
346 |
apply_scenario(next_step) # Update session state for the new scenario
|
347 |
-
st.session_state.last_update_time = time.time()
|
348 |
st.rerun() # Crucial: Rerun to reflect changes in widgets and charts
|
349 |
|
350 |
# --- UI Rendering ---
|
351 |
# This section renders the main UI. It executes after any potential rerun from the block above.
|
352 |
|
353 |
if st.session_state.running_demo:
|
354 |
-
st.info(
|
355 |
-
|
|
|
|
|
|
|
356 |
if st.button("Stop Demo"):
|
357 |
-
|
358 |
st.rerun()
|
359 |
-
else:
|
360 |
-
|
361 |
-
|
362 |
-
st.
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
svs.vertical_slider(
|
374 |
-
label=label, min_value=0.0, max_value=1.0, step=0.01, height=50,
|
375 |
-
key=f"slider_{i}", # This key links the widget to st.session_state[f"slider_{i}"]
|
376 |
-
slider_color="green", track_color="lightgray", thumb_color="black"
|
377 |
-
)
|
378 |
|
379 |
-
# Ground truth selectbox
|
380 |
-
st.selectbox(
|
381 |
-
"Ground Truth Token", options=options,
|
382 |
-
index=options.index(st.session_state['ground_truth']), # Display value from session state
|
383 |
-
key='ground_truth' # Links widget to st.session_state['ground_truth']
|
384 |
-
)
|
385 |
|
386 |
# Placeholder for charts and loss calculations that will be updated
|
387 |
# This section always reads the current st.session_state to generate its content.
|
388 |
|
389 |
-
current_prob_values_from_state = [
|
|
|
|
|
390 |
total_from_state = sum(current_prob_values_from_state)
|
391 |
probs_for_charts = (
|
392 |
torch.ones(len(options)) / len(options)
|
@@ -394,63 +165,144 @@ probs_for_charts = (
|
|
394 |
else torch.tensor([v / total_from_state for v in current_prob_values_from_state])
|
395 |
)
|
396 |
|
397 |
-
gt_choice_for_charts = st.session_state.get(
|
398 |
if gt_choice_for_charts == "Text":
|
399 |
-
gt_index_for_charts = 10
|
400 |
gt_numeric_for_charts = None
|
401 |
else:
|
402 |
gt_index_for_charts = int(gt_choice_for_charts)
|
403 |
gt_numeric_for_charts = gt_index_for_charts
|
404 |
|
405 |
-
st.
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
414 |
)
|
415 |
-
|
|
|
|
|
|
|
|
|
416 |
|
417 |
ce_loss = -torch.log(torch.clamp(probs_for_charts[gt_index_for_charts], min=1e-9))
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
|
|
423 |
# Ensure numeric_probs_for_loss sums to 1 for NTL calculations if it's a subset
|
424 |
numeric_probs_sum = torch.sum(numeric_probs_for_loss)
|
425 |
-
if numeric_probs_sum > 1e-6
|
426 |
-
|
427 |
else:
|
428 |
-
|
429 |
-
|
430 |
|
431 |
loss_values_tensor = torch.arange(0, 10, dtype=torch.float32)
|
432 |
|
433 |
# Use normalized probabilities for NTL if only considering numeric tokens
|
434 |
-
if gt_choice_for_charts != "Text" and torch.sum(probs_for_charts[:10]) > 1e-6
|
435 |
-
pred_value = torch.sum(
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
|
|
|
|
|
|
|
|
441 |
|
442 |
if not torch.isnan(pred_value):
|
443 |
-
ntl_mse_loss =
|
|
|
|
|
444 |
abs_diff = torch.abs(loss_values_tensor - float(gt_numeric_for_charts))
|
445 |
if gt_choice_for_charts != "Text" and torch.sum(probs_for_charts[:10]) > 1e-6:
|
446 |
-
|
|
|
|
|
447 |
elif gt_choice_for_charts != "Text":
|
448 |
-
|
449 |
else:
|
450 |
-
|
|
|
451 |
else:
|
452 |
-
ntl_mse_loss = torch.tensor(float(
|
453 |
-
ntl_was_loss = torch.tensor(float(
|
454 |
|
455 |
|
456 |
ce_val = round(ce_loss.item(), 3)
|
@@ -458,6 +310,38 @@ mse_val = round(ntl_mse_loss.item(), 3) if not torch.isnan(ntl_mse_loss) else "N
|
|
458 |
was_val = round(ntl_was_loss.item(), 3) if not torch.isnan(ntl_was_loss) else "N/A"
|
459 |
|
460 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
461 |
loss_data = {"Loss": ["Cross Entropy"], "Value": [ce_val]}
|
462 |
if was_val != "N/A":
|
463 |
loss_data["Loss"].append("NTL-WAS")
|
@@ -469,34 +353,103 @@ if mse_val != "N/A":
|
|
469 |
loss_df = pd.DataFrame(loss_data)
|
470 |
|
471 |
# ============== Chart Display ==============
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
472 |
# Create a single chart for loss visualization
|
473 |
st.subheader("Loss Comparison")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
474 |
|
475 |
# Create an Altair chart that will look good and redraw cleanly
|
476 |
-
chart =
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
486 |
)
|
487 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
488 |
# Add value labels on top of bars
|
489 |
-
text = chart.mark_text(
|
490 |
-
|
491 |
-
baseline='bottom',
|
492 |
-
dy=-5,
|
493 |
-
fontSize=14
|
494 |
-
).encode(
|
495 |
-
text=alt.Text('Value:Q', format='.3f')
|
496 |
)
|
497 |
|
498 |
# Combine chart and text
|
499 |
-
final_chart =
|
500 |
|
501 |
# Display chart with the full container width
|
502 |
st.altair_chart(final_chart, use_container_width=True)
|
@@ -507,7 +460,7 @@ st.altair_chart(final_chart, use_container_width=True)
|
|
507 |
if st.session_state.running_demo:
|
508 |
# This check is implicitly: if we are here and demo is running, it means
|
509 |
# the time-based advance condition was NOT met in the block at the top.
|
510 |
-
time.sleep(0.1)
|
511 |
st.rerun()
|
512 |
|
513 |
# Add explanation of the demonstration
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
import altair as alt
|
4 |
+
import numpy as np
|
5 |
import pandas as pd
|
6 |
+
import streamlit as st
|
7 |
import streamlit_vertical_slider as svs
|
8 |
import torch
|
9 |
+
|
10 |
+
from scenarios import bimodal, dirac, gauss
|
11 |
+
|
12 |
+
DEMO_INTERVAL = 1.5
|
13 |
+
NTL_MSE_SCALING = 0.5
|
14 |
+
MAX_LOSS_PLOT = 15
|
15 |
+
LAST_STEP = -1
|
16 |
+
|
17 |
+
# """TODO:
|
18 |
+
# - Remove flickering of loss evolution scenario plot (lower ylim?)
|
19 |
+
# - Move manual part down (predicted token probabilities)
|
20 |
+
# - Allow to set GT token for each demo
|
21 |
+
# - Add text token to loss evolution barplot
|
22 |
+
# - pick good default (4?)
|
23 |
+
# """
|
24 |
+
|
25 |
|
26 |
# Define options globally as it's used in initialization and UI
|
27 |
options = [str(i) for i in range(10)] + ["Text"]
|
28 |
|
29 |
# --- Session State Initialization ---
|
30 |
# Ensure all session state variables are initialized before first use, especially by widgets.
|
31 |
+
if "running_demo" not in st.session_state:
|
32 |
st.session_state.running_demo = False
|
33 |
+
if "demo_step" not in st.session_state:
|
34 |
st.session_state.demo_step = 0
|
35 |
+
if "last_update_time" not in st.session_state:
|
36 |
st.session_state.last_update_time = 0
|
37 |
+
if "loss_container" not in st.session_state:
|
38 |
st.session_state.loss_container = None
|
39 |
+
if "previous_chart_html" not in st.session_state:
|
40 |
st.session_state.previous_chart_html = ""
|
41 |
+
if "active_scenarios" not in st.session_state:
|
42 |
+
# default if you want one to load on first show
|
43 |
+
st.session_state.active_scenarios = dirac
|
44 |
+
if "loss_history" not in st.session_state:
|
45 |
+
st.session_state.loss_history = []
|
46 |
|
47 |
# Initialize states for sliders and ground_truth selector
|
48 |
# Using len(options) to correctly size for 0-9 + "Text"
|
49 |
for i in range(len(options)):
|
50 |
if f"slider_{i}" not in st.session_state:
|
51 |
st.session_state[f"slider_{i}"] = 1.0 / len(options)
|
52 |
+
if "ground_truth" not in st.session_state:
|
53 |
+
st.session_state["ground_truth"] = options[0] # Default to "0"
|
54 |
|
55 |
|
56 |
st.title("Number Token Loss - Demo")
|
57 |
|
58 |
+
st.markdown(
|
59 |
+
"""
|
60 |
+
**Instructions**
|
61 |
+
|
62 |
+
1. **Pick a ground truth token (0–9).**
|
63 |
+
2. **Select one of the three automated demos:**
|
64 |
+
- **Dirac**: a one-hot (Dirac) distribution whose single 1.0 mass moves from token 0 all the way to “Text.”
|
65 |
+
- **Gaussian**: a peaked Gaussian (0.6 mass at center, 0.4 spread) that slides its center from token 0 to “Text.”
|
66 |
+
- **Bimodal**: two equal peaks (0.5 each) that start at (0,8) and then move symmetrically away from the GT token.
|
67 |
+
"""
|
68 |
+
)
|
69 |
+
|
70 |
+
if "ground_truth" not in st.session_state:
|
71 |
+
st.session_state["ground_truth"] = "4"
|
72 |
+
gt = st.selectbox(
|
73 |
+
"Ground Truth Token",
|
74 |
+
options=options,
|
75 |
+
index=options.index(st.session_state["ground_truth"]),
|
76 |
+
key="ground_truth",
|
77 |
+
)
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
|
|
80 |
def apply_scenario(step_idx):
|
81 |
+
scenario = st.session_state.active_scenarios[step_idx]
|
|
|
|
|
82 |
for i, val in enumerate(scenario["values"]):
|
83 |
st.session_state[f"slider_{i}"] = val
|
|
|
84 |
|
85 |
+
|
86 |
+
def start_dirac_demo():
|
87 |
+
st.session_state.active_scenarios = dirac
|
88 |
+
st.session_state.running_demo = True
|
89 |
+
st.session_state.demo_step = 0
|
90 |
+
st.session_state.last_update_time = time.time()
|
91 |
+
apply_scenario(0)
|
92 |
+
|
93 |
+
|
94 |
+
def start_gauss_demo():
|
95 |
+
st.session_state.active_scenarios = gauss
|
96 |
+
st.session_state.running_demo = True
|
97 |
+
st.session_state.demo_step = 0
|
98 |
+
st.session_state.last_update_time = time.time()
|
99 |
+
apply_scenario(0)
|
100 |
+
|
101 |
+
|
102 |
+
def start_bimodal_demo():
|
103 |
+
st.session_state.active_scenarios = bimodal
|
104 |
st.session_state.running_demo = True
|
105 |
st.session_state.demo_step = 0
|
106 |
st.session_state.last_update_time = time.time()
|
107 |
+
apply_scenario(0)
|
108 |
+
|
109 |
|
110 |
def stop_demo():
|
111 |
st.session_state.running_demo = False
|
112 |
|
113 |
+
|
114 |
# --- Demo State Advancement Logic ---
|
115 |
# This block handles advancing the demo. If it advances, it updates session state
|
116 |
# and then reruns. This ensures widgets are drawn with the new state in the next run.
|
117 |
if st.session_state.running_demo:
|
118 |
+
scenario = st.session_state.active_scenarios
|
119 |
current_time = time.time()
|
120 |
+
if current_time - st.session_state.last_update_time > DEMO_INTERVAL:
|
121 |
+
next_step = (st.session_state.demo_step + 1) % len(scenario)
|
122 |
st.session_state.demo_step = next_step
|
123 |
apply_scenario(next_step) # Update session state for the new scenario
|
124 |
+
st.session_state.last_update_time = time.time() # Reset timer
|
125 |
st.rerun() # Crucial: Rerun to reflect changes in widgets and charts
|
126 |
|
127 |
# --- UI Rendering ---
|
128 |
# This section renders the main UI. It executes after any potential rerun from the block above.
|
129 |
|
130 |
if st.session_state.running_demo:
|
131 |
+
st.info(
|
132 |
+
f"Showing scenario {st.session_state.demo_step + 1}"
|
133 |
+
f"/{len(st.session_state.active_scenarios)}: "
|
134 |
+
f"{st.session_state.active_scenarios[st.session_state.demo_step]['name']}"
|
135 |
+
)
|
136 |
if st.button("Stop Demo"):
|
137 |
+
st.session_state.running_demo = False
|
138 |
st.rerun()
|
139 |
+
else:
|
140 |
+
col1, col2, col3 = st.columns(3)
|
141 |
+
with col1:
|
142 |
+
if st.button("Run: Dirac"):
|
143 |
+
start_dirac_demo()
|
144 |
+
st.rerun()
|
145 |
+
with col2:
|
146 |
+
if st.button("Run: Gauss"):
|
147 |
+
start_gauss_demo()
|
148 |
+
st.rerun()
|
149 |
+
with col3:
|
150 |
+
if st.button("Run: Bimodal"):
|
151 |
+
start_bimodal_demo()
|
152 |
+
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
153 |
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
# Placeholder for charts and loss calculations that will be updated
|
156 |
# This section always reads the current st.session_state to generate its content.
|
157 |
|
158 |
+
current_prob_values_from_state = [
|
159 |
+
st.session_state.get(f"slider_{j}", 1.0 / len(options)) for j in range(len(options))
|
160 |
+
]
|
161 |
total_from_state = sum(current_prob_values_from_state)
|
162 |
probs_for_charts = (
|
163 |
torch.ones(len(options)) / len(options)
|
|
|
165 |
else torch.tensor([v / total_from_state for v in current_prob_values_from_state])
|
166 |
)
|
167 |
|
168 |
+
gt_choice_for_charts = st.session_state.get("ground_truth", options[0])
|
169 |
if gt_choice_for_charts == "Text":
|
170 |
+
gt_index_for_charts = 10 # Assuming "Text" is the 11th item (index 10)
|
171 |
gt_numeric_for_charts = None
|
172 |
else:
|
173 |
gt_index_for_charts = int(gt_choice_for_charts)
|
174 |
gt_numeric_for_charts = gt_index_for_charts
|
175 |
|
176 |
+
gt = st.session_state["ground_truth"]
|
177 |
+
|
178 |
+
st.markdown(f"#### Predicted Probability Distribution — Ground truth token {gt}")
|
179 |
+
df_dist = pd.DataFrame(
|
180 |
+
{"token": options, "probability": probs_for_charts.numpy().round(2)}
|
181 |
+
)
|
182 |
+
df_dist["type"] = [
|
183 |
+
"Ground Truth" if token == gt_choice_for_charts else "Prediction"
|
184 |
+
for token in options
|
185 |
+
]
|
186 |
+
bg = (
|
187 |
+
alt.Chart(pd.DataFrame({"token": [gt]}))
|
188 |
+
.mark_bar(size=40, color="lightgray", opacity=0.4)
|
189 |
+
.encode(
|
190 |
+
x=alt.X("token:N", sort=options),
|
191 |
+
x2=alt.X2("token:N"), # pin the right edge to the same category
|
192 |
+
y=alt.value(0), # bottom at y=0
|
193 |
+
y2=alt.value(1), # top at y=1 (full height)
|
194 |
+
)
|
195 |
+
)
|
196 |
+
|
197 |
+
bars = (
|
198 |
+
alt.Chart(df_dist)
|
199 |
+
.mark_bar()
|
200 |
+
.encode(
|
201 |
+
x=alt.X(
|
202 |
+
"token:N",
|
203 |
+
title="Token",
|
204 |
+
sort=options,
|
205 |
+
axis=alt.Axis(labelAngle=0, labelFontSize=14, titleFontSize=16),
|
206 |
+
),
|
207 |
+
y=alt.Y(
|
208 |
+
"probability:Q",
|
209 |
+
title="Probability",
|
210 |
+
scale=alt.Scale(domain=[0, 1]),
|
211 |
+
axis=alt.Axis(format=".2f", labelFontSize=14, titleFontSize=16),
|
212 |
+
),
|
213 |
+
color=alt.Color(
|
214 |
+
"type:N",
|
215 |
+
scale=alt.Scale(
|
216 |
+
domain=["Ground Truth", "Prediction"], range=["green", "steelblue"]
|
217 |
+
),
|
218 |
+
legend=alt.Legend(title="Token Type", titleFontSize=16, labelFontSize=14),
|
219 |
+
),
|
220 |
+
tooltip=[
|
221 |
+
alt.Tooltip("token:N", title="Token"),
|
222 |
+
alt.Tooltip("probability:Q", title="Probability", format=".2f"),
|
223 |
+
alt.Tooltip("type:N", title="Type"),
|
224 |
+
],
|
225 |
+
)
|
226 |
+
.properties(height=300)
|
227 |
+
)
|
228 |
+
annot1 = (
|
229 |
+
alt.Chart(pd.DataFrame({"token": [gt]}))
|
230 |
+
.mark_text(
|
231 |
+
text="⬇ Ground",
|
232 |
+
dy=-25, # 10px above the top of the bar
|
233 |
+
dx=25,
|
234 |
+
fontSize=14,
|
235 |
+
fontWeight="bold",
|
236 |
+
color="green",
|
237 |
+
)
|
238 |
+
.encode(x=alt.X("token:N", sort=options), y=alt.value(1))
|
239 |
+
)
|
240 |
+
|
241 |
+
# second line: “truth=4”
|
242 |
+
annot2 = (
|
243 |
+
alt.Chart(pd.DataFrame({"token": [gt]}))
|
244 |
+
.mark_text(
|
245 |
+
text=f"truth={gt}",
|
246 |
+
dy=-10, # 25px above the top, so it sits above line 1
|
247 |
+
dx=35,
|
248 |
+
fontSize=14,
|
249 |
+
fontWeight="bold",
|
250 |
+
color="green",
|
251 |
+
)
|
252 |
+
.encode(x=alt.X("token:N", sort=options), y=alt.value(1))
|
253 |
)
|
254 |
+
|
255 |
+
# 4) Layer them in order: background, bars, annotation
|
256 |
+
final_chart = (bg + bars + annot1 + annot2).properties(height=300)
|
257 |
+
|
258 |
+
st.altair_chart(final_chart, use_container_width=True)
|
259 |
|
260 |
ce_loss = -torch.log(torch.clamp(probs_for_charts[gt_index_for_charts], min=1e-9))
|
261 |
+
|
262 |
+
if gt_numeric_for_charts is None: # Text token
|
263 |
+
ntl_mse_loss = torch.tensor(float("nan")) # MSE not applicable for text
|
264 |
+
ntl_was_loss = torch.tensor(float("nan")) # WAS not applicable for text
|
265 |
+
else: # Numeric token
|
266 |
+
numeric_probs_for_loss = probs_for_charts[:10] # Probabilities for 0-9
|
267 |
# Ensure numeric_probs_for_loss sums to 1 for NTL calculations if it's a subset
|
268 |
numeric_probs_sum = torch.sum(numeric_probs_for_loss)
|
269 |
+
if numeric_probs_sum > 1e-6: # Avoid division by zero
|
270 |
+
normalized_numeric_probs = numeric_probs_for_loss / numeric_probs_sum
|
271 |
else:
|
272 |
+
normalized_numeric_probs = torch.zeros_like(numeric_probs_for_loss)
|
|
|
273 |
|
274 |
loss_values_tensor = torch.arange(0, 10, dtype=torch.float32)
|
275 |
|
276 |
# Use normalized probabilities for NTL if only considering numeric tokens
|
277 |
+
if gt_choice_for_charts != "Text" and torch.sum(probs_for_charts[:10]) > 1e-6:
|
278 |
+
pred_value = torch.sum(
|
279 |
+
(probs_for_charts[:10] / torch.sum(probs_for_charts[:10]))
|
280 |
+
* loss_values_tensor
|
281 |
+
)
|
282 |
+
elif (
|
283 |
+
gt_choice_for_charts != "Text"
|
284 |
+
): # if sum is zero, pred_value is ill-defined or 0
|
285 |
+
pred_value = torch.tensor(0.0)
|
286 |
+
else: # Should not happen if gt_numeric_for_charts is not None
|
287 |
+
pred_value = torch.tensor(float("nan"))
|
288 |
|
289 |
if not torch.isnan(pred_value):
|
290 |
+
ntl_mse_loss = ntl_mse_loss = (
|
291 |
+
NTL_MSE_SCALING * (pred_value - float(gt_numeric_for_charts)) ** 2
|
292 |
+
)
|
293 |
abs_diff = torch.abs(loss_values_tensor - float(gt_numeric_for_charts))
|
294 |
if gt_choice_for_charts != "Text" and torch.sum(probs_for_charts[:10]) > 1e-6:
|
295 |
+
ntl_was_loss = torch.sum(
|
296 |
+
(probs_for_charts[:10] / torch.sum(probs_for_charts[:10])) * abs_diff
|
297 |
+
)
|
298 |
elif gt_choice_for_charts != "Text":
|
299 |
+
ntl_was_loss = torch.tensor(0.0)
|
300 |
else:
|
301 |
+
ntl_was_loss = torch.tensor(float("nan"))
|
302 |
+
|
303 |
else:
|
304 |
+
ntl_mse_loss = torch.tensor(float("nan"))
|
305 |
+
ntl_was_loss = torch.tensor(float("nan"))
|
306 |
|
307 |
|
308 |
ce_val = round(ce_loss.item(), 3)
|
|
|
310 |
was_val = round(ntl_was_loss.item(), 3) if not torch.isnan(ntl_was_loss) else "N/A"
|
311 |
|
312 |
|
313 |
+
if len(st.session_state.loss_history) < st.session_state.demo_step + 1:
|
314 |
+
st.session_state.loss_history.append(
|
315 |
+
{
|
316 |
+
"token_index": np.argmax(
|
317 |
+
st.session_state.active_scenarios[st.session_state["demo_step"]][
|
318 |
+
"values"
|
319 |
+
]
|
320 |
+
),
|
321 |
+
# int(np.argmax(st.session_state['values']))
|
322 |
+
# int(),
|
323 |
+
"CE": ce_val,
|
324 |
+
"NTL-MSE": mse_val if mse_val != "N/A" else None,
|
325 |
+
"NTL-WAS": was_val if was_val != "N/A" else None,
|
326 |
+
}
|
327 |
+
)
|
328 |
+
last_step = st.session_state.demo_step
|
329 |
+
|
330 |
+
if st.session_state.loss_history:
|
331 |
+
loss_plot_data = []
|
332 |
+
for entry in st.session_state.loss_history:
|
333 |
+
for loss_type in ["CE", "NTL-MSE", "NTL-WAS"]:
|
334 |
+
if entry[loss_type] is not None:
|
335 |
+
loss_plot_data.append(
|
336 |
+
{
|
337 |
+
"Token Index": entry["token_index"],
|
338 |
+
"Loss Type": loss_type,
|
339 |
+
"Loss Value": entry[loss_type], # TODO: clip to MAX_LOSS_PLOT?
|
340 |
+
}
|
341 |
+
)
|
342 |
+
|
343 |
+
df_loss_plot = pd.DataFrame(loss_plot_data)
|
344 |
+
|
345 |
loss_data = {"Loss": ["Cross Entropy"], "Value": [ce_val]}
|
346 |
if was_val != "N/A":
|
347 |
loss_data["Loss"].append("NTL-WAS")
|
|
|
353 |
loss_df = pd.DataFrame(loss_data)
|
354 |
|
355 |
# ============== Chart Display ==============
|
356 |
+
|
357 |
+
|
358 |
+
st.subheader("Loss Evolution Over Scenarios")
|
359 |
+
|
360 |
+
x_domain = list(range(10))
|
361 |
+
|
362 |
+
grouped_chart = (
|
363 |
+
alt.Chart(df_loss_plot)
|
364 |
+
.mark_bar()
|
365 |
+
.encode(
|
366 |
+
x=alt.X(
|
367 |
+
"Token Index:O",
|
368 |
+
title="Predicted Token Index",
|
369 |
+
axis=alt.Axis(labelAngle=0),
|
370 |
+
scale=alt.Scale(domain=x_domain),
|
371 |
+
),
|
372 |
+
y=alt.Y(
|
373 |
+
"Loss Value:Q", title="Loss", scale=alt.Scale(domain=[0, MAX_LOSS_PLOT])
|
374 |
+
),
|
375 |
+
color=alt.Color("Loss Type:N", legend=alt.Legend(title="Loss")),
|
376 |
+
xOffset="Loss Type:N", # <== this causes the grouping instead of stacking
|
377 |
+
)
|
378 |
+
.properties(height=300)
|
379 |
+
)
|
380 |
+
|
381 |
+
st.altair_chart(grouped_chart, use_container_width=True)
|
382 |
+
|
383 |
+
|
384 |
# Create a single chart for loss visualization
|
385 |
st.subheader("Loss Comparison")
|
386 |
+
st.markdown("""
|
387 |
+
Adjust the sliders to set a predicted probability for each token (0-9 and "Text").
|
388 |
+
The sliders are vertical and compact. The app normalizes the slider values
|
389 |
+
to form a valid probability distribution, visualizes it, and computes the corresponding
|
390 |
+
Cross Entropy, NTL-MSE, and NTL-WAS losses.
|
391 |
+
""")
|
392 |
+
|
393 |
|
394 |
# Create an Altair chart that will look good and redraw cleanly
|
395 |
+
chart = (
|
396 |
+
alt.Chart(loss_df)
|
397 |
+
.mark_bar()
|
398 |
+
.encode(
|
399 |
+
x=alt.X("Loss:N", sort=loss_df["Loss"].tolist()),
|
400 |
+
y=alt.Y(
|
401 |
+
"Value:Q",
|
402 |
+
scale=alt.Scale(
|
403 |
+
domain=[
|
404 |
+
0,
|
405 |
+
max(
|
406 |
+
loss_df["Value"].max() * 1.2,
|
407 |
+
20 if st.session_state.running_demo else 0.5,
|
408 |
+
),
|
409 |
+
]
|
410 |
+
),
|
411 |
+
),
|
412 |
+
color=alt.Color(
|
413 |
+
"Loss:N",
|
414 |
+
scale=alt.Scale(
|
415 |
+
domain=["Cross Entropy", "NTL-WAS", "NTL-MSE"],
|
416 |
+
range=["steelblue", "red", "forestgreen"],
|
417 |
+
),
|
418 |
+
),
|
419 |
+
tooltip=["Loss", "Value"],
|
420 |
+
)
|
421 |
+
.properties(height=300)
|
422 |
)
|
423 |
|
424 |
+
# Sliders and Ground Truth Selector
|
425 |
+
# These widgets will read their initial values from st.session_state.
|
426 |
+
# User interactions will update st.session_state directly due to their keys.
|
427 |
+
if not st.session_state.running_demo:
|
428 |
+
st.markdown("#### Predicted Token Probabilities")
|
429 |
+
cols = st.columns(len(options))
|
430 |
+
for i, col in enumerate(cols):
|
431 |
+
label = options[i] # Use token name directly for label
|
432 |
+
with col:
|
433 |
+
svs.vertical_slider(
|
434 |
+
label=label,
|
435 |
+
min_value=0.0,
|
436 |
+
max_value=1.0,
|
437 |
+
step=0.01,
|
438 |
+
height=50,
|
439 |
+
key=f"slider_{i}", # This key links the widget to st.session_state[f"slider_{i}"]
|
440 |
+
slider_color="green",
|
441 |
+
track_color="lightgray",
|
442 |
+
thumb_color="black",
|
443 |
+
)
|
444 |
+
|
445 |
+
|
446 |
# Add value labels on top of bars
|
447 |
+
text = chart.mark_text(align="center", baseline="bottom", dy=-5, fontSize=14).encode(
|
448 |
+
text=alt.Text("Value:Q", format=".3f")
|
|
|
|
|
|
|
|
|
|
|
449 |
)
|
450 |
|
451 |
# Combine chart and text
|
452 |
+
final_chart = chart + text
|
453 |
|
454 |
# Display chart with the full container width
|
455 |
st.altair_chart(final_chart, use_container_width=True)
|
|
|
460 |
if st.session_state.running_demo:
|
461 |
# This check is implicitly: if we are here and demo is running, it means
|
462 |
# the time-based advance condition was NOT met in the block at the top.
|
463 |
+
time.sleep(0.1)
|
464 |
st.rerun()
|
465 |
|
466 |
# Add explanation of the demonstration
|