jaqen79 commited on
Commit
8e1d2f0
·
verified ·
1 Parent(s): 435cee1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -0
app.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoFeatureExtractor, AutoModelForImageClassification
3
+ import torch
4
+ from PIL import Image
5
+
6
+ # Carica feature extractor e modello dal tuo Hub
7
+ MODEL_ID = "jaqen79/retail_images_classification_v1"
8
+ extractor = AutoFeatureExtractor.from_pretrained(MODEL_ID)
9
+ model = AutoModelForImageClassification.from_pretrained(MODEL_ID)
10
+
11
+ def predict(image: Image.Image):
12
+ # Preprocess
13
+ inputs = extractor(images=image, return_tensors="pt")
14
+ with torch.no_grad():
15
+ outputs = model(**inputs)
16
+ probs = outputs.logits.softmax(dim=-1).tolist()[0]
17
+ # Assumi che model.config.id2label esista
18
+ labels = [model.config.id2label[i] for i in range(len(probs))]
19
+ # Ritorna dizionario label→probabilità
20
+ return {labels[i]: float(probs[i]) for i in range(len(probs))}
21
+
22
+ # Interfaccia Gradio
23
+ demo = gr.Interface(
24
+ fn=predict,
25
+ inputs=gr.components.Image(type="pil"), # Changed to gr.components.Image
26
+ outputs=gr.components.Label(num_top_classes=5), # Changed to gr.components.Label
27
+ title="Vision Transformer Demo",
28
+ description="Carica un'immagine e il modello ritorna le classi con probabilità."
29
+ )
30
+
31
+ if __name__ == "__main__":
32
+ demo.launch()