import gradio as gr from transformers import AutoImageProcessor, AutoModelForImageClassification import torch from PIL import Image MODEL_ID = "jaqen79/retail_images_classification_v1" processor = AutoImageProcessor.from_pretrained(MODEL_ID) model = AutoModelForImageClassification.from_pretrained(MODEL_ID) def predict(image: Image.Image): inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) probs = outputs.logits.softmax(dim=-1).tolist()[0] labels = [model.config.id2label[i] for i in range(len(probs))] return {labels[i]: float(probs[i]) for i in range(len(probs))} demo = gr.Interface( fn=predict, inputs=gr.components.Image(type="pil"), outputs=gr.components.Label(num_top_classes=5), title="Retail Image classification using fine-tuned ViT", description="Upload an image and the model returns the classes with probabilities." ) if __name__ == "__main__": demo.launch()