File size: 3,125 Bytes
01aade3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90c47ef
01aade3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90c47ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import streamlit as st
import os
import logging
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA
from ingest import create_chroma_db

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

checkpoint = "LaMini-T5-738M"

@st.cache_resource
def load_llm():
    tokenizer = AutoTokenizer.from_pretrained(checkpoint)
    model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
    pipe = pipeline(
        'text2text-generation',
        model=model,
        tokenizer=tokenizer,
        max_length=256,
        do_sample=True,
        temperature=0.3,
        top_p=0.95
    )
    return HuggingFacePipeline(pipeline=pipe)

def load_chroma_db():
    chroma_dir = "chroma_db"
    if not os.path.exists(chroma_dir):
        st.warning("Chroma database not found. Creating a new one...")
        create_chroma_db()

    if not os.path.exists(chroma_dir):
        st.error("Failed to create the Chroma database. Please check the 'docs' directory and try again.")
        raise RuntimeError("Chroma database creation failed.")

    try:
        embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
        db = Chroma.load_local(chroma_dir, embeddings)
        logger.info(f"Chroma database loaded successfully from {chroma_dir}")
        return db.as_retriever()
    except Exception as e:
        st.error(f"Failed to load Chroma database: {e}")
        logger.exception("Exception in load_chroma_db")
        raise

def process_answer(instruction):
    try:
        retriever = load_chroma_db()
        llm = load_llm()
        qa = RetrievalQA.from_chain_type(
            llm=llm,
            chain_type="stuff",
            retriever=retriever,
            return_source_documents=True
        )
        generated_text = qa.invoke(instruction)
        answer = generated_text['result']
        return answer, generated_text
    except Exception as e:
        st.error(f"An error occurred while processing the answer: {e}")
        logger.exception("Exception in process_answer")
        return "An error occurred while processing your request.", {}

def main():
    st.title("Search Your PDF πŸ“šπŸ“")
    
    with st.expander("About the App"):
        st.markdown(
            """
            This is a Generative AI powered Question and Answering app that responds to questions about your PDF File.
            """
        )

    question = st.text_area("Enter your Question")
    
    if st.button("Ask"):
        st.info("Your Question: " + question)
        st.info("Your Answer")
        try:
            answer, metadata = process_answer(question)
            st.write(answer)
            st.write(metadata)
        except Exception as e:
            st.error(f"An unexpected error occurred: {e}")
            logger.exception("Unexpected error in main function")

if __name__ == '__main__':
    main()