jarif commited on
Commit
49c6974
·
verified ·
1 Parent(s): fb7f837

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -17
app.py CHANGED
@@ -11,13 +11,6 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
11
  logging.basicConfig(level=logging.DEBUG)
12
 
13
  def load_faiss_index(index_path):
14
- """
15
- Load a FAISS index from a specified path.
16
- Parameters:
17
- - index_path (str): Path to the FAISS index file.
18
- Returns:
19
- - faiss.Index: Loaded FAISS index object.
20
- """
21
  if not os.path.exists(index_path):
22
  logging.error(f"FAISS index not found at {index_path}. Please create the index first.")
23
  st.error(f"FAISS index not found at {index_path}. Please create the index first.")
@@ -34,9 +27,6 @@ def load_faiss_index(index_path):
34
  raise
35
 
36
  def load_llm():
37
- """
38
- Load the HuggingFace model for generating responses.
39
- """
40
  checkpoint = "LaMini-T5-738M"
41
  tokenizer = AutoTokenizer.from_pretrained(checkpoint)
42
  model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
@@ -52,13 +42,6 @@ def load_llm():
52
  return pipe
53
 
54
  def process_answer(question):
55
- """
56
- Process the user's question using the FAISS index and LLM.
57
- Parameters:
58
- - question (str): User's question to be processed.
59
- Returns:
60
- - str: The answer generated by the LLM.
61
- """
62
  index_path = 'faiss_index/index.faiss'
63
  embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
64
  try:
 
11
  logging.basicConfig(level=logging.DEBUG)
12
 
13
  def load_faiss_index(index_path):
 
 
 
 
 
 
 
14
  if not os.path.exists(index_path):
15
  logging.error(f"FAISS index not found at {index_path}. Please create the index first.")
16
  st.error(f"FAISS index not found at {index_path}. Please create the index first.")
 
27
  raise
28
 
29
  def load_llm():
 
 
 
30
  checkpoint = "LaMini-T5-738M"
31
  tokenizer = AutoTokenizer.from_pretrained(checkpoint)
32
  model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
 
42
  return pipe
43
 
44
  def process_answer(question):
 
 
 
 
 
 
 
45
  index_path = 'faiss_index/index.faiss'
46
  embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
47
  try: