Update ingest.py
Browse files
ingest.py
CHANGED
@@ -1,63 +1,63 @@
|
|
1 |
-
import os
|
2 |
-
import logging
|
3 |
-
from langchain_community.document_loaders import PDFMinerLoader
|
4 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
-
from langchain_community.vectorstores import Chroma
|
7 |
-
|
8 |
-
logging.basicConfig(level=logging.INFO)
|
9 |
-
logger = logging.getLogger(__name__)
|
10 |
-
|
11 |
-
def create_chroma_db():
|
12 |
-
documents = []
|
13 |
-
docs_dir = "docs"
|
14 |
-
|
15 |
-
if not os.path.exists(docs_dir):
|
16 |
-
logger.error(f"The directory '{docs_dir}' does not exist.")
|
17 |
-
return
|
18 |
-
|
19 |
-
for root, dirs, files in os.walk(docs_dir):
|
20 |
-
for file in files:
|
21 |
-
if file.endswith(".pdf"):
|
22 |
-
file_path = os.path.join(root, file)
|
23 |
-
logger.info(f"Loading document: {file_path}")
|
24 |
-
try:
|
25 |
-
loader = PDFMinerLoader(file_path)
|
26 |
-
loaded_docs = loader.load()
|
27 |
-
if loaded_docs:
|
28 |
-
logger.info(f"Loaded {len(loaded_docs)} documents from {file_path}")
|
29 |
-
documents.extend(loaded_docs)
|
30 |
-
else:
|
31 |
-
logger.warning(f"No documents loaded from {file_path}")
|
32 |
-
except Exception as e:
|
33 |
-
logger.error(f"Error loading {file_path}: {e}")
|
34 |
-
|
35 |
-
if not documents:
|
36 |
-
logger.error("No documents were loaded. Check the 'docs' directory and file paths.")
|
37 |
-
return
|
38 |
-
|
39 |
-
logger.info(f"Loaded {len(documents)} documents.")
|
40 |
-
|
41 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
42 |
-
texts = text_splitter.split_documents(documents)
|
43 |
-
logger.info(f"Created {len(texts)} text chunks.")
|
44 |
-
if not texts:
|
45 |
-
logger.error("No text chunks created. Check the text splitting process.")
|
46 |
-
return
|
47 |
-
|
48 |
-
try:
|
49 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
50 |
-
logger.info("Embeddings initialized successfully.")
|
51 |
-
except Exception as e:
|
52 |
-
logger.error(f"Failed to initialize embeddings: {e}")
|
53 |
-
return
|
54 |
-
|
55 |
-
try:
|
56 |
-
db = Chroma.from_documents(texts, embeddings, persist_directory="chroma_db")
|
57 |
-
logger.info(f"Created Chroma database with {len(texts)} vectors.")
|
58 |
-
except Exception as e:
|
59 |
-
logger.error(f"Failed to create Chroma database: {e}")
|
60 |
-
return
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
create_chroma_db()
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
from langchain_community.document_loaders import PDFMinerLoader
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain_community.vectorstores import Chroma
|
7 |
+
|
8 |
+
logging.basicConfig(level=logging.INFO)
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
def create_chroma_db():
|
12 |
+
documents = []
|
13 |
+
docs_dir = "docs"
|
14 |
+
|
15 |
+
if not os.path.exists(docs_dir):
|
16 |
+
logger.error(f"The directory '{docs_dir}' does not exist.")
|
17 |
+
return
|
18 |
+
|
19 |
+
for root, dirs, files in os.walk(docs_dir):
|
20 |
+
for file in files:
|
21 |
+
if file.endswith(".pdf"):
|
22 |
+
file_path = os.path.join(root, file)
|
23 |
+
logger.info(f"Loading document: {file_path}")
|
24 |
+
try:
|
25 |
+
loader = PDFMinerLoader(file_path)
|
26 |
+
loaded_docs = loader.load()
|
27 |
+
if loaded_docs:
|
28 |
+
logger.info(f"Loaded {len(loaded_docs)} documents from {file_path}")
|
29 |
+
documents.extend(loaded_docs)
|
30 |
+
else:
|
31 |
+
logger.warning(f"No documents loaded from {file_path}")
|
32 |
+
except Exception as e:
|
33 |
+
logger.error(f"Error loading {file_path}: {e}")
|
34 |
+
|
35 |
+
if not documents:
|
36 |
+
logger.error("No documents were loaded. Check the 'docs' directory and file paths.")
|
37 |
+
return
|
38 |
+
|
39 |
+
logger.info(f"Loaded {len(documents)} documents.")
|
40 |
+
|
41 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
42 |
+
texts = text_splitter.split_documents(documents)
|
43 |
+
logger.info(f"Created {len(texts)} text chunks.")
|
44 |
+
if not texts:
|
45 |
+
logger.error("No text chunks created. Check the text splitting process.")
|
46 |
+
return
|
47 |
+
|
48 |
+
try:
|
49 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
50 |
+
logger.info("Embeddings initialized successfully.")
|
51 |
+
except Exception as e:
|
52 |
+
logger.error(f"Failed to initialize embeddings: {e}")
|
53 |
+
return
|
54 |
+
|
55 |
+
try:
|
56 |
+
db = Chroma.from_documents(texts, embeddings, persist_directory="chroma_db")
|
57 |
+
logger.info(f"Created Chroma database with {len(texts)} vectors.")
|
58 |
+
except Exception as e:
|
59 |
+
logger.error(f"Failed to create Chroma database: {e}")
|
60 |
+
return
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
create_chroma_db()
|