Update ingest.py
Browse files
ingest.py
CHANGED
@@ -2,26 +2,15 @@ import os
|
|
2 |
import logging
|
3 |
from langchain.document_loaders import PyPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from
|
6 |
-
from
|
7 |
|
8 |
-
#
|
9 |
-
logging.basicConfig(level=logging.
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
-
def
|
13 |
documents = []
|
14 |
-
docs_dir = "docs"
|
15 |
-
|
16 |
-
if not os.path.exists(docs_dir):
|
17 |
-
logger.error(f"The directory '{docs_dir}' does not exist.")
|
18 |
-
return
|
19 |
-
|
20 |
-
if not os.listdir(docs_dir):
|
21 |
-
logger.error(f"The directory '{docs_dir}' is empty.")
|
22 |
-
return
|
23 |
-
|
24 |
-
# Load documents
|
25 |
for root, dirs, files in os.walk(docs_dir):
|
26 |
for file in files:
|
27 |
if file.endswith(".pdf"):
|
@@ -34,71 +23,92 @@ def create_faiss_index():
|
|
34 |
documents.extend(loaded_docs)
|
35 |
logger.info(f"Loaded {len(loaded_docs)} pages from {file_path}.")
|
36 |
else:
|
37 |
-
logger.warning(f"No content extracted from {file_path}.")
|
38 |
except Exception as e:
|
39 |
logger.error(f"Error loading {file_path}: {e}")
|
|
|
40 |
|
41 |
-
|
42 |
-
logger.error("No documents were loaded. Check the 'docs' directory and file paths.")
|
43 |
-
return
|
44 |
-
|
45 |
-
logger.info(f"Total loaded documents: {len(documents)}")
|
46 |
-
|
47 |
-
# Split text into chunks
|
48 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
49 |
texts = text_splitter.split_documents(documents)
|
50 |
|
51 |
if not texts:
|
52 |
logger.error("No text chunks were created. Check the text splitting process.")
|
53 |
-
return
|
54 |
|
55 |
logger.info(f"Created {len(texts)} text chunks.")
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
logger.error(f"Failed to initialize embeddings: {e}")
|
66 |
-
return
|
67 |
-
|
68 |
-
# Verify embeddings are valid by generating one
|
69 |
try:
|
70 |
sample_embedding = embeddings.embed_query("sample text")
|
71 |
logger.debug(f"Sample embedding: {sample_embedding[:5]}... (truncated for brevity)")
|
72 |
except Exception as e:
|
73 |
logger.error(f"Error generating sample embedding: {e}")
|
74 |
-
return
|
75 |
|
76 |
-
|
|
|
|
|
77 |
try:
|
78 |
db = FAISS.from_documents(texts, embeddings)
|
79 |
logger.info(f"Created FAISS index with {len(texts)} vectors")
|
|
|
|
|
|
|
|
|
|
|
80 |
except Exception as e:
|
81 |
logger.error(f"Failed to create FAISS index: {e}")
|
82 |
-
return
|
83 |
|
84 |
-
|
85 |
-
index_dir = "faiss_index"
|
86 |
-
if not os.path.exists(index_dir):
|
87 |
-
os.makedirs(index_dir)
|
88 |
|
|
|
89 |
try:
|
90 |
-
db.save_local(
|
91 |
-
|
92 |
-
if os.path.exists(index_path):
|
93 |
-
logger.info(f"FAISS index file exists. Size: {os.path.getsize(index_path)} bytes.")
|
94 |
-
if os.path.getsize(index_path) > 0:
|
95 |
-
logger.info(f"FAISS index successfully saved to {index_path}")
|
96 |
-
else:
|
97 |
-
logger.error(f"FAISS index file '{index_path}' is empty.")
|
98 |
-
else:
|
99 |
-
logger.error(f"FAISS index file '{index_path}' does not exist after save attempt.")
|
100 |
except Exception as e:
|
101 |
-
logger.error(f"Failed to save FAISS index: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
if __name__ == "__main__":
|
104 |
-
|
|
|
2 |
import logging
|
3 |
from langchain.document_loaders import PyPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
+
from langchain.vectorstores import FAISS
|
7 |
|
8 |
+
# Setup logging
|
9 |
+
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
+
def load_documents(docs_dir):
|
13 |
documents = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
for root, dirs, files in os.walk(docs_dir):
|
15 |
for file in files:
|
16 |
if file.endswith(".pdf"):
|
|
|
23 |
documents.extend(loaded_docs)
|
24 |
logger.info(f"Loaded {len(loaded_docs)} pages from {file_path}.")
|
25 |
else:
|
26 |
+
logger.warning(f"No content extracted from {file_path}. Possibly encrypted or empty.")
|
27 |
except Exception as e:
|
28 |
logger.error(f"Error loading {file_path}: {e}")
|
29 |
+
return documents
|
30 |
|
31 |
+
def split_text(documents):
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
33 |
texts = text_splitter.split_documents(documents)
|
34 |
|
35 |
if not texts:
|
36 |
logger.error("No text chunks were created. Check the text splitting process.")
|
37 |
+
return None
|
38 |
|
39 |
logger.info(f"Created {len(texts)} text chunks.")
|
40 |
+
for i, text in enumerate(texts[:5]): # Sample first 5 chunks
|
41 |
+
logger.debug(f"Sample chunk {i}: {text[:100]}...") # Print first 100 characters
|
42 |
+
|
43 |
+
return texts
|
44 |
+
|
45 |
+
def create_embeddings():
|
46 |
+
model_name = "sentence-transformers/all-MiniLM-L6-v2"
|
47 |
+
embeddings = HuggingFaceEmbeddings(model_name=model_name)
|
48 |
+
|
|
|
|
|
|
|
|
|
49 |
try:
|
50 |
sample_embedding = embeddings.embed_query("sample text")
|
51 |
logger.debug(f"Sample embedding: {sample_embedding[:5]}... (truncated for brevity)")
|
52 |
except Exception as e:
|
53 |
logger.error(f"Error generating sample embedding: {e}")
|
54 |
+
return None
|
55 |
|
56 |
+
return embeddings
|
57 |
+
|
58 |
+
def create_faiss_index(texts, embeddings):
|
59 |
try:
|
60 |
db = FAISS.from_documents(texts, embeddings)
|
61 |
logger.info(f"Created FAISS index with {len(texts)} vectors")
|
62 |
+
# Directly check the FAISS index size
|
63 |
+
if len(db.index) > 0:
|
64 |
+
logger.info(f"FAISS index contains {len(db.index)} vectors.")
|
65 |
+
else:
|
66 |
+
logger.error("FAISS index contains 0 vectors after creation. Check the data and embeddings.")
|
67 |
except Exception as e:
|
68 |
logger.error(f"Failed to create FAISS index: {e}")
|
69 |
+
return None
|
70 |
|
71 |
+
return db
|
|
|
|
|
|
|
72 |
|
73 |
+
def save_faiss_index(db, index_path):
|
74 |
try:
|
75 |
+
db.save_local(index_path)
|
76 |
+
logger.info(f"FAISS index saved to {index_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
except Exception as e:
|
78 |
+
logger.error(f"Failed to save FAISS index to {index_path}: {e}")
|
79 |
+
|
80 |
+
def main():
|
81 |
+
docs_dir = "docs" # Adjust to your document directory
|
82 |
+
index_path = "faiss_index"
|
83 |
+
|
84 |
+
logger.info("Starting document processing...")
|
85 |
+
|
86 |
+
# Load documents
|
87 |
+
documents = load_documents(docs_dir)
|
88 |
+
if not documents:
|
89 |
+
logger.error("No documents were loaded. Exiting.")
|
90 |
+
return
|
91 |
+
|
92 |
+
# Split text into chunks
|
93 |
+
texts = split_text(documents)
|
94 |
+
if texts is None:
|
95 |
+
logger.error("Text splitting failed. Exiting.")
|
96 |
+
return
|
97 |
+
|
98 |
+
# Create embeddings
|
99 |
+
embeddings = create_embeddings()
|
100 |
+
if embeddings is None:
|
101 |
+
logger.error("Embeddings creation failed. Exiting.")
|
102 |
+
return
|
103 |
+
|
104 |
+
# Create FAISS index
|
105 |
+
db = create_faiss_index(texts, embeddings)
|
106 |
+
if db is None:
|
107 |
+
logger.error("FAISS index creation failed. Exiting.")
|
108 |
+
return
|
109 |
+
|
110 |
+
# Save FAISS index
|
111 |
+
save_faiss_index(db, index_path)
|
112 |
|
113 |
if __name__ == "__main__":
|
114 |
+
main()
|